Какими могут быть музыкальные тембры. Значение слова тембр в словаре музыкальных терминов. Смотреть значение Тембр в других словарях

Какими могут быть музыкальные тембры. Значение слова тембр в словаре музыкальных терминов. Смотреть значение Тембр
 в других словарях

Язык колокольчик, или отличительный признак. Тембр является отличительной чертой любого или .

Тембр – это так называемая звуковая окраска. Он является характеристикой качества звука, благодаря которой два тона одной и той же высоты и силы, произведенные разными инструментами или голосами, отличаются друг от друга.

История исследований тембра

В 1913 году известный немецкий физик Герман Гельмгольц в своем исследовании «Учение о звуковых ощущениях» установил, что в каждой гласной содержится одна или две области особых усиленных обертонов – характеристик тона гласных, входящих в спектр звука. Физик доказал, что благодаря различиям в характеристиках тона, гласные имеют друг от друга.

Звучание некоторых музыкальных тел, например, колокола или пластинки, сопровождается отличными обертонами от звучания предпочитаемых в классической музыке духовых и струнных инструментов. Однако и у последних, разнообразное усиление или ослабление различных обертонов производит изменение тембра.

Различие в тембрах человеческих голосов зависит как от самих голосовых связок, так и от условий резонанса в полости рта. Также влияние на тон человеческого голоса производят бесчисленные градации гласных, которые производят различные видоизменения тембра.

В исследованиях немецкого профессора Карла Шафгетля об акустических и музыкальных инструмента «Ueber Schall, Ton, Knall und einige andere Gegenstände der Akustik» доказано, что большое влияние на тембр оказывает материал, из которого изготовлен музыкальный инструмент. Так, например, звучание скрипки из ели, будет отличаться от звучания точно такой же скрипки из клена.

Важную роль в отличиях тембра, вызванных материалом инструмента, играет молекулярная структура. Так, органные мастера уже много веков знают, что изготовленные принципальные трубы из свинца или из олова, или корпус языковых труб из цинка или жести, играют ключевую роль в звучании инструмента.

Основные параметры тембра

Основными объективными параметрами, которые определяют оценку слушателя, являются спектр звука и характер переходных процессов обертонов. Также на тембр воспринимаемого звука оказывают влияние условия его воспроизведения, психологическое состояние слушателя, индивидуальные особенности слуха и даже музыкальный вкус.

Ярко, радостно, звонко поют трубы. У валторны звук мягкий и сочный. Голос фагота - густой, грубоватый, иногда чуть ворчливый. Скрипка, королева оркестра, звучит нежно и трепетно. А флейта заливается, словно прекрасная певчая птица. Звучание разных инструментов не перепутаешь, если даже они будут играть одну и ту же мелодию. Чем же отличаются их голоса? Оказывается - тембром. Слово это произошло от французского timbre, что означает колокольчик, а также метка, то есть отличительный знак. Другими словами, тембр и является отличительным знаком каждого инструмента. Это специфическая окраска звука, характер, присущий тому или иному инструменту или голосу. Зависит тембр от многих причин: от материала, из которого сделан инструмент, от того, каким способом извлекается звук, от размеров инструмента (огромный контрабас и небольшая скрипка сделаны из одного материала, и звук на них извлекается одинаково; однако разница есть не только в высоте, но и в тембре звучания). Роль тембра в музыке очень велика. Композиторы учитывают ее при инструментовке своих сочинений. Вы можете прочитать об этом в рассказе об инструментовке.


Смотреть значение Тембр в других словарях

Тембр — (тэмбр), тембра, м. (фр. timbre). Характерная окраска, сообщаемая звуку того или иного инструмента или голоса обертонами, призвуками. Мягкий тембр. Резкий тембр. Виолончельный,........
Толковый словарь Ушакова

Тембр М. — 1. Характерная окраска звука (голоса или инструмента).
Толковый словарь Ефремовой

Тембр — [тэ], -а; м. [франц. timbre] Характерная окраска звука, сообщаемая ему обертонами, призвуками, по которой различаются друг от друга звучания одной и той же высоты. Приятный,........
Толковый словарь Кузнецова

Тембр — (франц. timbre) индивидуальная особенность голоса, обусловленная присоединением добавочных обертонов к основному тону издаваемого звука.
Большой медицинский словарь

Тембр — (франц. timbre) -..1) в фонетике - окраска звука, определяемаяположением формант в частотном спектре звука...2) В музыке - качествозвука (его окраска), позволяющее различать........
Большой энциклопедический словарь

Тембр — (франц. timbre, англ. timbre, нем. Klangfarbe) - окраска звука; один из признаков муз. звука (наряду с высотой, громкостью и длительностью), по к-рому различают звуки одинаковой высоты........
Музыкальная энциклопедия

Тембр — (англ. timbre) - воспринимаемое качество ("окраска") звука, связанное с распределением энергии его спектра вдоль частотной оси.Понятие Т. применяется чаще всего к музыкальным........
Психологическая энциклопедия

Тембр как личность

Нет двух абсолютно одинаковых по тембру голосов. Специалист по певческим технологиям Иван Левидов, говорит, что «основные характерные элементы тембра каждого голоса есть величина постоянная, не изменяющаяся с момента мутации голоса».
Порой, долго не видя человека, мы можем не узнать его, но стоит ему заговорить, мы тут же его вспомним. Один только тембр голоса во многом определяет человека. Французский фониатр Жан Абитболь однажды даже отказался делать операцию пациентке – считал, что изменение голоса изменит ее личность.

Что такое тембр

Термин произошел от французского timbre (колокольчик). Это психоакустическая характеристика голоса. Его эксклюзивная окрашенность. Поэтому, когда анализируют мастерство владения вокалом, часто используют определения из словаря живописи - «колорит», «палитра», «краски». И вот эти «цветовые» нюансы и позволяют различать голоса людей. Даже если высота, громкость и длительность их звучания одинакова.

От плотности смычки голосовых связок, от их длины, ширины, упругости и натяжения. Последнее создается пластичностью перстнещитовидной мышцы, которую профессор и императорский лейб-отиатр Н. П. Симановский называл «музыкальной», так как она действует, как колок у скрипки.

Еще тембр зависит от объема трахеи и формы внутреннего резонатора. Так у Шаляпина было куполообразное нёбо, от которого, как от соборного свода отталкивался звук. И это нёбо стало предметом изучения не только фониатров, но и отоларингологов, антропологов и анатомов.
За «окраску» же тембра отвечают обертоны. Чем больше обертонов – тем «вкуснее» голос.

Обертоны

Это звуки над звуками. Тренированным горлом производятся одновременно как бы два звука – тон и обертон. Обертоны – высокочастотны и ранжированы по законам «золотого сечения». Что это такое? Когда мы смотрим на лицо человека и находим его привлекательным, это означает, что оно «скроено» природой по соотношению частей соразмерно. Вот так же и обертоны гармонизируют тембр голоса при помощи интервалов.

Голос словно поднимается по обертонной лестнице - с одной ступени на другую. Между ними паузы. «Первый обертон отстоит от тона на октаву. Второй – уже меньше. Это – квинта.» И так же - по «шажкам» обертонов - постепенно подстраивается и обычное человеческое ухо, которое первоначально может обертонов и не различать.

Как рождается отклик на звуковую волну.

Человек в среднем состоит на 60% из жидкой субстанции, которая и откликается на звук вибрацией. Немецкий исследователь звука и фотограф (киматик – от «kyma» – волна) Александр Лаутервассер провел ряд опытов – проигрывал у водоема звуки разной частоты - лязг подвижного состава поезда, крики чаек, фразы из токкат Баха. И фиксировал на фотокамеру волновой «отклик» воды. Каждый звук рождал свой узор. Так и человек вибрирует вслед за тембром голоса.

Чем мы говорим

«Ртом», «горлом», «грудью» и даже «животом». Последний в ответе за повышенную корпулентность подавляющего большинства оперных певцов – они «кладут голос на чрево». И вовлекают в процесс звучания все тело. Как младенец. Когда он плачет, то резонирует от макушки до пяток. С возрастом человек «зажимается». Голос теряет способность включать весь организм. И его вибрации «застревают» на уровне горла. Но мы созданы природой как единый резонатор.

Как тембр выдает говорящего

Уже по тембру каждый из нас в состоянии оценить психофизические параметры человека. Венские лингвофизиологи опытным путем подтвердили, что люди только по голосу могут судить – высокий человек или низкий, полный или худой. Правда, с возрастом может выйти осечка, потому что тембр счастливого человека делает голос моложе лет на 10. Гнев и страх – «старят».

Проявит тембр и уровень интеллекта собеседника, род его занятий, темперамент. Как и его состояние - счастлив или нет, болен или здоров, утомлен или бодр. В тембре голоса отразится, и кто говорит – лидер или ведомый, лжец или поборник правды, завистник или щедрая душа, способен ли он на предательство или будет верен до гробовой доски.

Как раз связь тембра с доверием партнеру заинтересовала специалистов канадского научно-исследовательского Университета МакМастера. Участникам эксперимента дали прослушать голоса 20 мужчин и женщин. Один мужской – низкий вкрадчивый – все отметили, как «опасный». «С точки зрения сексуальной стратегии, - констатировала автор проекта Джиллиан О’Коннор, - оба пола расценивают такой тембр, как предупреждение о будущих изменах». Доверие вызвали - более высокий мужской и более низкий женский. Их сочли «надежными».

Британские исследователи из университетов Ливерпуля и Стирлинга, работая в племени хадза в Танзании, сделали открытие, что обладатели тембра в нижнем голосовом регистре имеют больше детей. Так танзанские «баритоны» опередили «теноров» в среднем на два ребенка. Ученые же Государственного университета штата Нью-Йорк нашли зависимость сексуальной привлекательности тембра женщин от фертильности.

Психологи Университета южной Каролины, проанализировав телефонные разговоры, выявили разницу тембров в процессе общения с безразличными и любимыми людьми. Последние даже копировали интонации друг друга, как бы ставя голоса на одну тоновую волну.

Антропологи Пенсильванского университета - Сара Вольф и Дэвид Путс - впервые попытались разобраться, «как признаки маскулинности влияют на мнение человека о его способности доминировать». Опыты показали, что мужчины с голосами глубокой тембральной окраски воспринимаются другими особями того же пола как «вожаки прайда».

Тембр на службе политики

В 2012 году корреспонденты журнала Proceedings of the Royal Society в содружестве с PR-технологами и нейропсихологами провели опросов американцев, которые отвечали на вопрос: «Какой тембр голоса вызывает у них наибольшее доверие к политику?».

Тембр – одна из объективных колляций, которую учитывают спецслужбы при составлении психопортретов преступников. Профайлеры ФБР и ЦРУ обращают внимание на то, как дребезжит и как бы «спотыкается» голос. Когда юлит и недоговаривает, тембр становится скачкообразным, невнятным. Тревожность заставит его «задраться», повысив тон. Когнитивный диссонанс выразится в резких голосовых колебаниях и продемонстрирует шаткость позиции, неуверенность. Напряженный тембр – контроль за каждым шагом. Нотки металла - убежденность. Повышенная громкость – стремление подавить. Но основной тембральный рисунок навсегда остается неизменным.

Неповторимость

Раньше в паспорта итальянцев вносили - наряду с датой рождения, ростом, цветом волос и глаз - тембр голоса. Ныне суды США и Великобритании принимают - в качестве доказательств вины/невиновности – голосовые записи. Почему? Потому что тембр так же уникален, как генетический код в молекуле ДНК, папиллярный узор на подушечках пальцев или строение ушной раковины.
Уникален тембр настолько, что крупнейшие банки мира не боятся кодировать сейфы голосами их владельцев.

ТЕМБР

ТЕМБР

(фр.). Оттенок звука одного и того же тона на различных голосах или инструментах.

Словарь иностранных слов, вошедших в состав русского языка.- Чудинов А.Н. , 1910 .

ТЕМБР

оттенок звука одного и того же тона на различных голосах или инструментах.

Словарь иностранных слов, вошедших в состав русского языка.- Павленков Ф. , 1907 .

ТЕМБР

очень ясно слышимая, но не поддающаяся строгому определению особенность голоса каждого отдельного человека, которая дает возможность отличить речь одного лица среди многих других и которая позволяет нам узнать по голосу забытого знакомого; тембр музыкальных инструментов, это - оттенок в звуке, присущий только данному инструменту и обусловливаемый материалом, из которого он сделан, его размерами и устройством.

Полный словарь иностранных слов, вошедших в употребление в русском языке.- Попов М. , 1907 .

ТЕМБР

франц. timbre , от лат. tympanum , от греч. tympanon . Оттенок звука.

Объяснение 25000 иностранных слов, вошедших в употребление в русский язык, с означением их корней.- Михельсон А.Д. , 1865 .

Тембр

(фр. timbre) окраска или характер звука голоса, муз. инструмента, зависящие от того, какие обертоны сопутствуют основному звуковому тону.

Новый словарь иностранных слов.- by EdwART, , 2009 .

Тембр

тембра, м. [фр. timbre ]. Характерная окраска, сообщаемая звуку того или иного инструмента или голоса обертонами, призвуками.

Большой словарь иностранных слов.- Издательство «ИДДК» , 2007 .

Тембр

(тэ ), а, м. (фр. timbre греч. tympanon барабан).
Характерная окраска звука (у музыкального инструмента, голоса), сообщаемая ему обертонами , призвуками. Красивый т . голоса .
Тембровый - относящийся к тембру.

Толковый словарь иностранных слов Л. П. Крысина.- М: Русский язык , 1998 .


Синонимы :

Смотреть что такое "ТЕМБР" в других словарях:

    Тембр, а [тэ] … Русское словесное ударение

    тембр - тембр, а … Русский орфографический словарь

    тембр - тембр/ … Морфемно-орфографический словарь

    - [тэ], а; м. [франц. timbre] Характерная окраска звука, сообщаемая ему обертонами, призвуками, по которой различаются друг от друга звучания одной и той же высоты. Приятный, низкий т. Различные тембры. Т. голоса, инструмента. ◁ Тембровый, ая, ое.… … Энциклопедический словарь

    - [тэмбр], тембра, муж. (франц. timbre). Характерная окраска, сообщаемая звуку того или иного инструмента или голоса обертонами, призвуками. Мягкий тембр. Резкий тембр. Виолончельный, скрипичный тембр. Гласные звуки речи отличаются между собой по… … Толковый словарь Ушакова

    тембр - субъективно воспринимаемая особенность звука в виде его окраски, связанная с одновременным воздействием разночастотных звуковых колебаний, входящих в состав сложного звука. Словарь практического психолога. М.: АСТ, Харвест. С. Ю. Головин. 1998.… … Большая психологическая энциклопедия

    тембр - Определение, обычно используемое в психоакустике. Тембр это атрибут слухового ощущения, в определениях которого слушающий может судить о том, в какой степени различаются два звука, представленные аналогичным образом и имеющие одинаковую громкость … Справочник технического переводчика

    - (франц. timbre) ..1) в фонетике окраска звука, определяемая положением формант в частотном спектре звука2)] В музыке качество звука (его окраска), позволяющее различать звуки одинаковой высоты, исполненные на различных инструментах или различными … Большой Энциклопедический словарь

    ТЕМБР - ТЕМБР. Качественная характеристика или специфическая окраска звука, в физическом смысле представляющая собой определенное сочетание тонов. Т. характерен для музыкальных звуков, для звуков человеческой речи. Существующие языки отличаются по Т. как … Новый словарь методических терминов и понятий (теория и практика обучения языкам)

    ТЕМБР - ТЕМБР, качество звука, позволяющее при одной и той же высоте различать звуки отдельных музыкальных инструментов, звуки голоса разных людей и т. д. Тембр обусловлен наличием в составе звука обертонов и определяется относительной интенсивностью… … Большая медицинская энциклопедия

Книги

  • Комплект таблиц. Физика. Механические волны. Акустика (8 таблиц) , . Учебный альбом из 8 листов. Артикул - 5-8665-008. Волновой процесс. Продольные волны. Поперечные волны. Периодические волны. Отражение волн. Стоячие волны. Звуковые волны. Высота звука.…
  1. Тембр ​


    Самым сложным субьективно ощущаемым параметром является тембр. С определением этого термина возникают сложности, сопоставимые с определением понятия "жизнь": все понимают, что это такое, однако над научным определением наука бьется уже несколько столетий. Аналогично с термином "тембр": всем ясно, о чем идет речь, когда говорят "красивый тембр голоса", "глухой тембр инструмента" и т. д., но… О тембре нельзя сказать "больше-меньше", "выше-ниже", для его описания используются десятки слов: сухой, звонкий, мягкий, резкий, яркий и т. д. (О терминах для описания тембра поговорим отдельно).

    Тембр (timbre-фр.) означает "качество тона", "окраску тона" (tone quality).

  2. Тембр и акустические характеристики звука
    Современные компьютерные технологии позволяют выполнить детальный анализ временной структуры любого музыкального сигнала - это может сделать практически любой музыкальный редактор, например, Sound Forge, Wave Lab, SpectroLab и др. Примеры временной структуры (осциллограмм) звуков одной высоты (нота "до" первой октавы), создаваемых различными инструментами (орган, скрипка).
    Как видно из представленных волновых форм (т. е. зависимости изменения звукового давления от времени), в каждом из этих звуков можно выделить три фазы: атаку звука (процесс установления), стационарную часть, процесс спада. В различных инструментах, в зависимости от используемых в них способов звукообразования, временные интервалы этих фаз разные - это видно на рисунке.

    У ударных и щипковых инструментов, например гитары, короткий временной отрезок стационарной фазы и атаки и длинный по времени - фазы затухания. В звуке органной трубы можно видеть достаточно длинный отрезок стационарной фазы и короткий период затухания и т. д. Если представить отрезок стационарной части звучания более растянутым во времени, то можно отчетливо видеть периодическую структуру звука. Эта периодичность является принципиально важной для определения музыкальной высоты тона, поскольку слуховая система только для периодических сигналов может определить высоту, а непериодические сигналы воспринимаются ею как шумовые.

    Как утверждает классическая теория, развиваемая, начиная с Гельмгольца почти все последующие сто лет, восприятие тембра зависит от спектральной структуры звука, то есть от состава обертонов и соотношения их амплитуд. Позволю себе напомнить, что обертоны - это все составляющие спектра выше фундаментальной частоты, а обертоны, частоты которых находятся в целочисленных соотношениях с основным тоном, называются гармониками .
    Как известно, для того, чтобы получить амплитудный и фазовый спектр, необходимо выполнить преобразование Фурье от временной функции (t), т. е. зависимости звукового давления р от времени t.
    С помощью преобразования Фурье любой временной сигнал можно представить в виде суммы (или интеграла) составляющих его простых гармонических (синусоидальных) сигналов, а амплитуды и фазы этих составляющих образуют соответственно амплитудный и фазовый спектры.

    С помощью созданных за последние десятилетия цифровых алгоритмов быстрого преобразования Фурье (БПФ или FFT), выполнить операцию по определению спектров можно также практически в любой программе обработки звука. Например, программа SpectroLab вообще является цифровым анализатором, позволяющим построить амплитудный и фазовый спектр музыкального сигнала в различной форме. Формы представления спектра могут быть различными, хотя представляют они одни и те же результаты расчетов.

    На рисунке представлены в виде АЧХ амплитудные спектры различных музыкальных инструментов (осциллограммы которых были показаны на рисунке ранее). АЧХ представляет здесь зависимость амплитуд обертонов в виде уровня звукового давления в дБ, от частот.

    Иногда спектр представляют в виде дискретного набора обертонов с разными амплитудами. Спектры могут быть представлены в виде спектрограмм, где по вертикальной оси отложена частота, по горизонтальной - время, а амплитуда представлена интенсивностью цвета.

    Кроме того, существует форма представления в виде трехмерного (кумулятивного) спектра, о котором будет сказано далее.
    Для построения указанных на предыдущем рисунке спектров, в стационарной части осциллограммы выделяется некоторый временной отрезок, и проводится расчет усредненного спектра по данному отрезку. Чем больше этот отрезок, тем точнее получается разрешающая способность по частоте, но при этом могут теряться (сглаживаться) отдельные детали временной структуры сигнала. Такие стационарные спектры обладают индивидуальными чертами, характерными для каждого музыкального инструмента, и зависят от механизма звукообразования в нем.

    Например, флейта использует в качестве резонатора открытую с двух концов трубу, и поэтому содержит в спектре все четные и нечетные гармоники. При этом уровень (амплитуда) гармоник быстро уменьшается с частотой. У кларнета используется в качестве резонатора труба, закрытая с одного конца, поэтому в спектре, в основном, содержатся нечетные гармоники. У трубы в спектре много высокочастотных гармоник. Соответственно, тембры звучания у всех этих инструментов совершенно разные: у флейты - мягкий, нежный, у кларнета - матовый, глуховатый, у трубы - яркий, резкий.

    Исследованию влияния спектрального состава обертонов на тембр посвящены сотни работ, поскольку эта проблема чрезвычайно важна как для проектирования музыкальных инструментов и высококачественной акустической аппаратуры, особенно в связи с развитием аппаратуры Hi-Fi и High-End, так и для слуховой оценки фонограмм и др. задач, встающих перед звукорежиссером. Накопленный огромный слуховой опыт наших замечательных звукорежиссеров - П.К. Кондрашина, В.Г. Динова, Е.В. Никульского, С.Г. Шугаля и др. - мог бы представить бесценные сведения по этой проблеме (особенно если бы они написали о нем в своих книгах, чего хотелось бы им пожелать).

    Поскольку этих сведений чрезвычайно много и они часто противоречивы, приведем только некоторые из них.
    Анализ общей структуры спектров различных инструментов, показанных на рисунке 5, позволяет сделать следующие выводы:
    - при отсутствии или недостатке обертонов, особенно в нижнем регистре, тембр звука становится скучным, пустым - примером может служит синусоидальный сигнал от генератора;
    - присутствие в спектре первых пяти-семи гармоник с достаточно большой амплитудой придает тембру полноту и сочность;
    - ослабление первых гармоник и усиление высших гармоник (от шестой-седьмой и выше) придает тембру

    Анализ огибающей амплитудного спектра для различных музыкальных инструментов позволил установить (Кузнецов "Акустика музыкальных инструментов"):
    - плавный подьем огибающей (увеличение амплитуд определенной группы обертонов) в области 200…700 Гц позволяет получить оттенки сочности, глубины;
    - подьем в области 2,5…3 кГц придает тембру полетность, звонкость;
    - подьем в области 3…4,5 кГц придает тембру резкость, пронзительность и др.

    Одна из многочисленных попыток классифицировать тембровые качества в зависимости от спектрального состава звука приведена на рисунке.

    Многочисленные эксперименты с оценкой качества звучания (а, следовательно, тембра) акустических систем позволили установить влияние различных пиков-провалов АЧХ на заметность изменения тембра. В частности, показано, что заметность зависит от амплитуды, расположения по частотной шкале и добротности пиков- провалов на огибающей спектра (т. е. на АЧХ). В средней области частот пороги заметности пиков, т. е. отклонения от среднего уровня, составляют 2…3 дБ, причем заметность изменения тембра на пиках больше, чем на провалах. Узкие по ширине провалы (менее 1/3 октавы) почти не заметны на слух - по-видимому, это обьясняется тем, что именно такие узкие провалы вносит помещение в АЧХ различных звуковых источников, и слух к ним привык.

    Существенное влияние оказывает группировка обертонов в формантные группы, особенно в области максимальной чувствительности слуха. Поскольку именно расположение форматных областей служит главным критерием различимости звуков речи, наличие формантных частотных диапазонов (т. е. подчеркнутых обертонов) значительно влияет на восприятие тембра музыкальных инструментов и певческого голоса: например, формантная группа в области 2…3 кГц придает полетность, звонкость певческому голосу и звукам скрипки. Эта третья форманта особенно выражена в спектрах скрипок Страдивари.

    Таким образом, безусловно справедливо утверждение классической теории, что воспринимаемый тембр звука зависит от его спектрального состава, то есть расположения обертонов на частотной шкале и соотношения их амплитуд. Это подтверждается многочисленной практикой работы со звуком в разных областях. Современные музыкальные программы позволяют легко проверить это на простых примерах. Например, можно в Sound Forge синтезировать с помощью встроенного генератора варианты звуков с различным спектральным составом, и послушать, как изменяется тембр их звучания.

    Из этого следуют еще два очень важных вывода:
    - тембр звучания музыки и речи изменяется в зависимости от изменения громкости и от транспонирования по высоте.

    При изменении громкости меняется восприятие тембра. Во-первых, при увеличении амплитуды колебаний вибраторов различных музыкальных инструментов (струн, мембран, дек и др.) в них начинают проявляться нелинейные эффекты, и это приводит к обогащению спектра дополнительными обертонами. На рисунке показан спектр фортепиано при разной силе удара, где штрихом отмечена шумовая часть спектра.

    Во-вторых, с увеличением уровня громкости изменяется чувствительность слуховой системы к восприятию низких и высоких частот (о кривых равной громкости было написано в предыдущих статьях). Поэтому при повышении громкости (до разумного предела 90…92 дБ) тембр становится полнее, богаче, чем при тихих звуках. При дальнейшем увеличении громкости начинают сказываться сильные искажения в источниках звука и слуховой системе, что приводит к ухудшению тембра.

    Транспонирование мелодии по высоте также меняет воспринимаемый тембр. Во-первых, обедняется спектр, поскольку часть обертонов попадает в неслышимый диапазон выше 15…20 кГц; во-вторых, в области высоких частот пороги слуха значительно выше, и высокочастотные обертоны становятся не слышны. В звуках низкого регистра (например, в органе) обертоны усиливаются из-за повышения чувствительности слуха к средним частотам, поэтому звуки низкого регистра звучат сочнее, чем звуки среднего регистра, где такого усиления обертонов нет. Следует отметить, что поскольку кривые равной громкости, как и потери чувствительности слуха к высоким частотам, в значительной степени индивидуальны, то и изменение восприятия тембра при изменении громкости и высоты также очень различаются у разных людей.
    Однако, накопленные к настоящему времени экспериментальные данные позволили выявить определенную инвариантность (стабильность) тембра при целом ряде условий. Например, при транспонировании мелодии по частотной шкале оттенки тембра, конечно, меняются, но в целом тембр инструмента или голоса легко опознается: при прослушивании, например, саксофона или другого инструмента через транзисторный радиоприемник можно опознать его тембр, хотя спектр его был значительно искажен. При прослушивании одного и того же инструмента в разных точках зала его тембр так же меняется, но принципиальные свойства тембра, присущие данному инструменту, остаются.

    Некоторые из этих противоречий удалось частично обьяснить в рамках классической спектральной теории тембра. Например, было показано, что для сохранения основных признаков тембра при транспонировании (переносе по частотной шкале) приниципиально важным является сохранение формы огибающей амплитудного спектра (т. е. его формантной структуры). Например, на рисунке показано, что при переносе спектра на октаву в том случае, когда структура огибающей сохраняется (вариант "а"), вариации тембра менее значительны, чем при переносе спектра с сохранением соотношения амплитуд (вариант "б").

    Этим обьясняется то, что звуки речи (гласные, согласные) можно распознать независимо от того, с какой высотой (частотой фундаментального тона) они произнесены, если при этом сохраняется расположение их формантных областей относительно друг друга.

    Таким образом, подводя итоги, полученные классической теорией тембра с учетом результатов последних лет, можно сказать, что тембр, безусловно, существенно зависит от усредненного спектрального состава звука: количества обертонов, их относительного расположения на частотной шкале, от соотношения их амплитуд, то есть формы спектральной огибающей (АЧХ), а точнее, от спектрального распределения энергии по частоте.
    Однако, когда в 60-х годах начались первые опыты синтеза звуков музыкальных инструментов, попытки воссоздать звучание, в частности, трубы по известному составу ее усредненного спектра оказались неудачными - тембр был совершенно не похож на звук медных духовых инструментов. То же относится и к первым попыткам синтеза голоса. Именно в это период, опираясь на возможности, который предоставили компьютерные технологии, началось развитие другого направления - установление связи восприятия тембра с временной структурой сигнала.
    Прежде, чем переходить к результатам, полученным в этом направлении, надо сказать следующее.
    Первое. Довольно широко распространено мнение, что при работе со звуковыми сигналами достаточно получить информацию об их спектральном составе, поскольку перейти к их временной форме всегда можно с помощью преобразования Фурье, и наоборот. Однако, однозначная связь между временным и спектральным представлениями сигнала существует только в линейных системах, а слуховая система является принципиально нелинейной системой, как при больших, так и при малых уровнях сигнала. Поэтому обработка информации в слуховой системе происходит параллельно как в спектральной, так и во временной области.

    Разработчики высококачественной акустической аппаратуры сталкиваются с этой проблемой постоянно, когда искажения АЧХ акустической системы (то есть неравномерность спектральной огибающей) доведены почти до слуховых порогов (неравномерность 2 дБ, ширина полосы 20 Гц…20 кГц и т. д.), а эксперты или звукорежиссеры говорят: "скрипка звучит холодно" или "голос с металлом" и т.п. Таким образом, информации, полученной из спектральной области, для слуховой системы недостаточно, нужна информация о временной структуре. Неудивительно, что методы измерений и оценки акустической аппаратуры существенно изменились за последние годы - появилась новая цифровая метрология, позволяющая определить до 30 параметров, как во временной, так и в спектральной областях.
    Следовательно, информацию о тембре музыкального и речевого сигнала слуховая система должна получать как из временной, так и из спектральной структуры сигнала.
    Второе. Все полученные выше результаты в классической теории тембра (теории Гельмгольца) базируются на анализе стационарных спектров, полученных из стационарной части сигнала с определенным усреднением, однако принципиально важным является то обстоятельство, что в реальных музыкальных и речевых сигналах практически нет постоянных, стационарных частей. Живая музыка - это непрерывная динамика, постоянное изменение, и это связано с глубинными свойствами слуховой системы.

    Исследования физиологии слуха позволили установить, что в слуховой системе, особенно в ее высших разделах, имеется множество так называемых нейронов "новизны" или "опознавания", т. е. нейронов, которые включаются и начинают проводить электрические разряды, только если есть изменения в сигнале (включение, выключение, изменение уровня громкости, высоты и т. д.). Если же сигнал стационарный, то эти нейроны не включаются, и контроль за сигналом осуществляет ограниченное количество нейронов. Это явление широко известно из повседневной жизни: если сигнал не меняется, то часто его просто перестают замечать.
    Для музыкального исполнения всякие монотонность и постоянство являются губительными: у слушателя отключаются нейроны новизны и он перестает воспринимать информацию (эстетическую, эмоциональную, смысловую и др), поэтому в живом исполнении всегда есть динамика (музыканты и певцы широко используют различную модуляцию сигнала - вибрато, тремоло и пр.).

    Кроме того, каждый музыкальный инструмент, включая голос, обладает особой системой звукообразования, которая диктует свою временную структуру сигнала и его динамику изменения. Сравнение временной структуры звука показывает принципиальные различия: в частности, длительности всех трех частей - атаки, стационарной части и спада - у всех инструментов различаются по продолжительности и по форме. У ударных инструментов очень короткая стационарная часть, время атаки 0,5…3 мс и время спада 0,2…1 с; у смычковых время атаки 30…120 мс, время спада 0,15…0,5 с; у органа атака - 50…1000 мс и спад 0,2…2 с. Кроме того, принципиально отличается форма временной огибающей.
    Эксперименты показали, что, если удалить часть временной структуры, соответствующей атаке звука, или поменять местами атаку и спад (проиграть в обратном направлении), или атаку от одного инструмента заменить атакой от другого, то опознать тембр данного инструмента становится практически невозможным. Следовательно, для распознавания тембра не только стационарная часть (усредненный спектр которой служит основой классической теории тембра), но и период формирования временной структуры, как и период затухания (спада) являются жизненно важными элементами.

    Действительно, при прослушивании в любом помещении первые отражения поступают на слуховую систему после того, как атака и начальная часть стационарной части уже была услышана. В то же время на спад звука от инструмента накладывается реверберационный процесс помещения, что значительно маскирует звук, и, естественно, приводит к модификации восприятия его тембра. Слух обладает определенной инерционностью, и короткие звуки воспринимаются как щелчки. Поэтому длительность звука должна быть больше 60 мс, чтобы можно было распознать высоту, и, соответственно, тембр. По-видимому, постоянные должны быть близки.
    Тем не менее, времени между началом прихода прямого звука и моментами поступления первых отражений оказывается достаточно, чтобы распознать тембр звучания отдельного инструмента - очевидно, этим обстоятельством и определяется инвариантность (стабильность) распознавания тембров разных инструментов в разных условиях прослушивания. Современные компьютерные технологии позволяют достаточно детально проанализировать процессы установления звука у разных инструментов, и выделить самые существенные акустические признаки, наиболее важные для определения тембра.

  3. Существенное влияние на восприятие тембра музыкального инструмента или голоса оказывает структура его стационарного (усредненного) спектра: состав обертонов, их расположение на частотной шкале, их частотные соотношения, распределения амплитуд и форма огибающей спектра, наличие и форма формантных областей и т.д., что полностью подтверждает положения классической теории тембра, изложенные еще в трудах Гельмгольца.
    Однако экспериментальные материалы, полученные за последние десятилетия, показали, что не менее существенную, а, может быть, и гораздо более существенную роль в распознавании тембра играет нестационарное изменение структуры звука и, соответственно, процесс развертывания во времени его спектра, в первую очередь, на начальном этапе атаки звука.

    Процесс изменения спектра во времени особенно наглядно можно "увидеть" с помощью спектрограмм или трехмерных спектров (они могут быть построены с помощью большинства музыкальных редакторов Sound Forge, SpectroLab, Wave Lab и др.). Их анализ для звуков различных инструментов позволяет выявить характерные особенности процессов "развертывания" спектров. Например, на рисункепоказан трехмерный спектр звучания колокола, где по одной оси отложена частота в Гц, по другой время в секундах; по третьей амплитуда в дБ. На графике отчетливо видно, как происходит процесс нарастания, установления и спада во времени спектральной огибающей.

    Сравнение атаки тона С4 у различных деревянных инструментов показывает, что процесс установления колебаний у каждого инструмента имеет свой особый характер:

    У кларнета доминируют нечетные гармоники 1/3/5, причем третья гармоника появляется в спектре на 30 мс позже первой, затем постепенно "выстраиваются" более высокие гармоники;
    - у гобоя установление колебаний начинается со второй и третьей гармоники, затем появляется четвертая и только через 8 мс начинает появляться первая гармоника;
    - у флейты сначала появляется первая гармоника, затем только через 80 мс постепенно вступают все остальные.

    На рисунке показан процесс установления колебаний для группы медных инструментов: трубы, тромбона, валторны и тубы.

    Отчетливо видны различия:
    - у трубы компактное появление группы высших гармоник, у тромбона первой появляется вторая гармоника, затем первая, и через 10 мс вторая и третья. У тубы и валторны видна концентрация энергии в первых трех гармониках, высшие гармоники практически отсутствуют.

    Анализ полученных результатов показывает, что процесс атаки звука существенно зависит от физической природы звукоизвлечения на данном инструменте:
    - от использования амбушюров или тростей, которые, в свою очередь, делятся на одинарные или двойные;
    - от различных форм труб (прямые узкомензурные или конусные широкомензурные) и т.д.

    Это определяет количество гармоник, время их появления, скорость выстраивания их амплитуды, а соответственно и форму огибающей временной структуры звука. У некоторых инструментов, например, флейты

    Огибающая в период атаки имеет плавный экспоненциальный характер, а у некоторых, например, фагота, отчетливо видны биения, что и является одной из причин существенных различий в их тембре.

    Во время атаки высшие гармоники иногда опережают основной тон, поэтому могут происходить флуктуации высоты тона периодичность, а значит, и высота суммарного тона, выстраиваются постепенно. Иногда эти изменения периодичности носят квазислучайный характер. Все эти признаки помогают слуховой системе "опознать" тембр того или иного инструмента в начальный момент звучания.

    Для оценки тембра звучания важен не только момент его распознавания (т.е. способность отличить один инструмент от другого), но и возможность оценить изменение тембра в процессе исполнения. Здесь важнейшую роль играет динамика изменения спектральной огибающей во времени на всех этапах звучания: атаки, стационарной части, спада.
    Характер поведения каждого обертона во времени также несет важнейшую информацию о тембре. Например, в звучании колоколов особенно четко видна динамика изменения, как по составу спектра, так и по характеру изменения во времени амплитуд его отдельных обертонов: если в первый момент после удара в спектре отчетливо видно несколько десятков спектральных составляющих, что создает шумовой характер тембра, то через несколько секунд в спектре остаются несколько основных обертонов (основной тон, октава, дуодецима и минорная терция через две октавы), остальные затухают, и это создает особый тонально окрашенный тембр звучания.

    Пример изменения амплитуд основных обертонов во времени для колокола показан на рисунке. Видно, что для него характерна короткая атака и длинный период затухания, при этом скорость вступления и спада обертонов различных порядков и характер изменения их амплитуд во времени существенно отличаются. Поведение различных обертонов во времени зависит от типа инструмента: в звучании рояля, органа, гитары и др. процесс изменения амплитуд обертонов имеет совершенно разный характер.

    Опыт показывает, что аддитивный компьютерный синтез звуков, учитывающий специфику развертывания отдельных обертонов во времени, позволяет получить значительно более "жизненное" звучание.

    Вопрос о том, динамика изменения каких именно обертонов несет информацию о тембре, связан с существованием критических полос слуха. Базилярная мембрана в улитке действует как линейка полосовых фильтров, ширина полосы которых зависит от частоты: выше 500 Гц она равна примерно 1/3 октавы, ниже 500 Гц она составляет примерно100 Гц. Ширина полосы этих слуховых фильтров называется "критической полосой слуха" (существует специальная единица измерения 1 барк, равная ширине критической полосы во всем диапазоне слышимых частот).
    Внутри критической полосы слух производит интегрирование поступившей звуковой информации, что играет также важную роль в процессах слуховой маскировки. Если проанализировать сигналы на выходе слуховых фильтров, то можно видеть, что первые пять-семь гармоник в спектре звучания любого инструмента попадают обычно каждая в свою критическую полосу, поскольку они достаточно далеко отстоят друг от друга в таких случаях говорят, что гармоники "развертываются" слуховой системой. Разряды нейронов на выходе таких фильтров синхронизированы с периодом каждой гармоники.

    Гармоники выше седьмой обычно находятся достаточно близко друг к другу по частотной шкале, и не "развертываются" слуховой системой внутрь одной критической полосы попадает несколько гармоник, а на выходе слуховых фильтров получается сложный сигнал. Разряды нейронов в этом случае синхронизированы с частотой огибающей, т.е. основного тона.

    Соответственно, механизм обработки информации слуховой системой для развернутых и неразвернутых гармоник несколько отличается в первом случае используется информация "по времени", во втором "по месту".

    Существенную роль при распознавании высоты тона, как было показано в предыдущих статьях, играют первые пятнадцать- восемнадцать гармоник. Эксперименты с помощью компьютерного аддитивного синтеза звуков показывают, что поведение именно этих гармоник оказывает также наиболее существенное влияние на изменение тембра.
    Поэтому в ряде исследований предлагалось размерность тембра считать равной пятнадцати-восемнадцати, и оценивать его изменение по этому количеству шкал это одно из принципиальных отличий тембра от таких характеристик слухового восприятия, как высота или громкость, которые могут быть шкалированы по двум- трем параметрам (например, громкость), зависящих в основном от интенсивности, частоты и длительности сигнала.

    Достаточно хорошо известно, что если в спектре сигнала присутствует достаточно много гармоник с номерами от 7-ой до15…18-ой, с достаточно большими амплитудами, например, у трубы, скрипки, язычковых труб органа и т.п., то тембр воспринимается как яркий, звонкий, резкий и т. д. Если в спектре присутствуют в основном низшие гармоники, например, у тубы, валторны, тромбона, то тембр характеризуется как темный, глухой и т.д.. Кларнет, у которого в спектре доминируют нечетные гармоники, обладает несколько "носовым" тембром и т.д.
    В соответствии с современными взглядами, важнейшую роль для восприятия тембра имеет изменение динамики распределения максимума энергии между обертонами спектра.

    Для оценки этого параметра введено понятие "центроид спектра", который определяется как средняя точка распределения спектральной энергии звука, его иногда определяют как "балансную точку" спектра. Способ определения его состоит в том, что рассчитывается значение некоторой средней частоты:

    Где Ai амплитуда составляющих спектра, fi их частота.
    Для примера, показанного на рисунке, это значение центроида составляет 200 Гц.

    F =(8 х 100 + 6 х 200 + 4 х 300 + 2 х 400)/(8 + 6 + 4 + 2) = 200.

    Смещение центроида в сторону высоких частот ощущается как повышение яркости тембра.
    Существенное влияние распределения спектральной энергии по частотному диапазону и ее изменения во времени на восприятие тембра связано, вероятно, с опытом распознания звуков речи по формантным признакам, которые и несут информацию о концентрации энергии в различных областях спектра (неизвестно, правда, что было первичным).
    Эта способность слуха имеет существенное значение при оценке тембров музыкальных инструментов, поскольку наличие формантных областей характерно для большинства музыкальных инструментов, например, у скрипок в областях 800…1000 Гц и 2800…4000 Гц, у кларнетов 1400…2000 Гц и т.д.
    Соответственно, их положение и динамика изменения во времени влияют на восприятие индивидуальных особенностей тембра.
    Известно, какое значительное влияние на восприятие тембра певческого голоса оказывает наличие высокой певческой форманты (в области 2100…2500 Гц у басов, 2500…2800 Гц у теноров, 3000…3500 Гц у сопрано). В этой области у оперных певцов сосредоточивается до 30% акустической энергии, что обеспечивает звонкость и полетность голоса. Удаление с помощью фильтров певческой форманты из записей различных голосов (эти опыты были выполнены в исследованиях проф. В.П. Морозова) показывает, что тембр голоса становится тусклым, глуховатым и вялым.

    Изменение тембра при изменении громкости исполнения и транспонировании по высоте также сопровождается сдвигом центроида за счет изменения количества обертонов.
    Пример изменения положения центроида для звуков скрипки разной высоты показан на рисунке (по оси абсцисс отложена частота расположения центроида в спектре).
    Исследования показали, что у многих музыкальных инструментов имеется почти монотонная связь между увеличением интенсивности (громкости) и сдвигом центроида в высокочастотную область, за счет чего тембр становится ярче.

    По-видимому, при синтезе звуков и создании различных компьютерных композиций следует учитывать динамическую связь между интенсивностью и положением центроида в спектре для того, чтобы получать более естественный тембр.
    Наконец, различие в восприятии тембров реальных звуков и звуков с "виртуальной высотой", т.е. звуков, высоту которых мозг "достраивает" по нескольким целочисленным обертонам спектра (это характерно, например, для звуков колоколов), можно объяснить с позиций положения центроида спектра. Поскольку у этих звуков значение частоты основного тона, т.е. высоты, может быть одинаковым, а положение центроида разное из-за разного состава обертонов, то, соответственно, тембр будет восприниматься по-разному.
    Интересно отметить, что еще более десяти лет назад для измерения акустической аппаратуры был предложен новый параметр, а именно трехмерный спектр распределения энергии по частоте и по времени, так называемое распределение Вигнера, которое достаточно активно используется различными фирмами для оценки аппаратуры, поскольку, как показывает опыт, позволяет установить наилучшее соответствие с ее качеством звучания. Учитывая изложенное выше свойство слуховой системы использовать динамику изменения энергетических признаков звукового сигнала для определения тембра, можно предположить, что этот параметр распределение Вигнера может быть полезен и для оценки музыкальных инструментов.

    Оценка тембров различных инструментов всегда носит субъективный характер, но если при оценке высоты и громкости можно на основе субъективных оценок расположить звуки по определенной шкале (и даже ввести специальные единицы измерения "сон" для громкости и "мел" для высоты), то оценка тембра значительно более трудная задача. Обычно для субъективной оценки тембра слушателям предъявляются пары звуков, одинаковых по высоте и громкости, и их просят расположить эти звуки по разным шкалам между различными противоположными описательными признаками: "яркий"/"темный", "звонкий"/"глухой" и т.д. (О выборе различных терминов для описания тембров и о рекомендациях международных стандартов по этому вопросу мы обязательно поговорим в дальнейшем).
    Существенное влияние на определение таких параметров звука, как высота, тембр и др., оказывает поведение во времени первых пяти-семи гармоник, а также ряда "неразвернутых" гармоник до 15…17-ой.
    Однако, как известно из общих законов психологии, кратковременная память человека может одновременно оперировать не более чем семью-восьмью символами. Поэтому очевидно, что и при распознавании и оценке тембра используется не более семи восьми существенных признаков.
    Попытки установить эти признаки путем систематизации и усреднения результатов экспериментов, найти обобщенные шкалы, по которым можно было бы идентифицировать тембры звуков различных инструментов, связать эти шкалы с различными временно-спектральными характеристиками звука, предпринимаются уже давно.

    Одной из самых известных является работа Грея (1977 г.), где было проведено статистическое сравнение оценок по различным признакам тембров звуков различных инструментов струнных, деревянных, перкуссионных и др. Звуки были синтезированы на компьютере, что позволяло менять в требуемых направлениях их временные и спектральные характеристики. Классификация тембральных признаков была выполнена в трехмерном (ортогональном) пространстве, где в качестве шкал, по которым по которым производилась сравнительная оценка степени подобия тембральных признаков (в пределах от 1 до 30), были выбраны следующие:

    Первая шкала - значение центроида амплитудного спектра (по шкале отложено смещение центроида, т.е. максимума спектральной энергии от низких к высоким гармоникам);
    - вторая - синхронность спектральных флуктуаций, т.е. степень синхронности вступления и развития отдельных обертонов спектра;
    - третья - степень наличия низкоамплитудной негармонической высокочастотной энергии шума в период атаки.

    Обработка полученных результатов с помощью специального пакета программ для кластерного анализа позволила выявить возможность достаточно четкой классификации инструментов по тембрам внутри предложенного трехмерного пространства.

    Попытка визуализировать тембральное различие звуков музыкальных инструментов в соответствии с динамикой изменения их спектра в период атаки была предпринята в работе Полларда (1982 г.), результаты показаны на рисунке.

    Трехмерное пространство тембров

  4. Поиски методов многомерного шкалирования тембров и установление их связей с спектрально-временными характеристиками звуков активно продолжаются. Эти результаты чрезвычайно важны для развития технологий компьютерного синтеза звуков, для создания различных электронных музыкальных композиций, для коррекции и обработки звука в звукорежиссерской практике и т.д.

    Интересно отметить, что еще в начале века великий композитор ХХ века Арнольд Шёнберг высказал идею, что "…если рассматривать высоту тона, как одну из размерностей тембра, а современную музыку построенной на вариации этой размерности, то почему бы не попробовать использовать другие размерности тембра для создания композиций". Эта идея реализуется в настоящее время в творчестве композиторов, создающих спектральную (электроакустическую) музыку. Именно поэтому интерес к проблемам восприятия тембра и его связям с объективными характеристиками звука настолько высок.

    Таким образом, полученные результаты показывают, что, если в первый период изучения восприятия тембра (на основе классической теории Гельмгольца) была установлена четкая связь изменения тембра с изменением спектрального состава стационарной части звучания (составом обертонов, соотношением их частот и амплитуд и др.), то второй период этих исследований (с начала 60-х годов) позволил установить принципиальную важность спектрально-временных характеристик.

    Это изменение структуры временной огибающей на всех этапах развития звука: атаки (что особенно важно для распознавания тембров различных источников), стационарной части и спада. Это и динамическое изменение во времени спектральной огибающей, в т.ч. смещение центроида спектра, т.е. смещение максимума спектральной энергии во времени, а также развитие во времени амплитуд спектральных составляющих, особенно первых пяти-семи "неразвернутых" гармоник спектра.

    В настоящее время начался третий период изучения проблемы тембра центр исследований переместился в сторону изучения влияния фазового спектра, а также к использованию психофизических критериев в распознавании тембров, лежащих в основе общего механизма распознавания звукового образа (группировка в потоки, оценка синхронности и др.).

    Тембр и фазовый спектр

    Все изложенные результаты по установлению связи воспринимаемого тембра с акустическими характеристиками сигнала относились к амплитудному спектру, точнее, к временному изменению спектральной огибающей (в первую очередь смещению энергетического центра амплитудного спектра-центроида) и развертыванию во времени отдельных обертонов.

    В этом направлении было проделано наибольшее количество работ и получено много интересных результатов. Как уже было отмечено, на протяжении почти ста лет в психоакустике превалировало мнение Гельмгольца о том, что наша слуховая система не чувствительна к изменениям фазовых соотношений между отдельными обертонами. Однако постепенно были накоплены экспериментальные данные о том, что слуховой аппарат чувствителен к изменениям фаз между различными компонентами сигнала (работы Шредера, Хартмана и др.).

    В частности, было установлено, что слуховой порог к фазовому сдвигу в двух- и трехкомпонентных сигналах в области низких и средних частот составляет 10…15 градусов.

    В 80-х годах это привело к созданию ряда акустических систем с линейно-фазовой характеристикой. Как известно из общей теории систем, для неискаженной передачи сигнала необходимо, чтобы соблюдались постоянство модуля передаточной функции, т.е. амплитудно-частотной характеристики (огибающей амплитудного спектра), и линейная зависимость фазового спектра от частоты, т.е. φ(ω) = -ωТ.

    Действительно, если амплитудная огибающая спектра сохраняется постоянной, то, как было сказано выше, искажений звукового сигнала при этом не должно происходить. Требования же к сохранению линейности фазы во всем диапазоне частот, как показали исследования Блауерта, оказались избыточными. Было установлено, что слух реагирует в первую очередь на скорость изменения фазы (т.е. ее производную по частоте), которая называется "групповое время задерживания ГВЗ ": τ = dφ(ω)/dω.

    В результате многочисленных субъективных экспертиз были построены пороги слышимости искажений ГВЗ (т.е. величины отклонения Δτ от ее постоянного значения) для различных речевых, музыкальных и шумовых сигналов. Эти слуховые пороги зависят от частоты, и в области максимальной чувствительности слуха составляют 1…1,5 мс. Поэтому последние годы при создании акустической аппаратуры Hi-Fi ориентируются, в основном, на приведенные выше слуховые пороги по искажению ГВЗ.

    Вид волновой формы при разных соотношениях фаз обертонов; красная - все обертоны имеют одинаковые начальные фазы, синяя - фазы распределены случайно.

    Таким образом, если фазовые соотношения оказывают слышимое влияние на определение высоты тона, то можно ожидать, что они окажут существенное влияние и на распознавание тембра.

    Для экспериментов были выбраны звуки с основным тоном 27,5 и 55 Гц и со ста обертонами, с равномерным соотношением амплитуд, характерным для звуков фортепиано. При этом исследовались и тоны со строго гармоничными обертонами, и с определенной характерной для звуков фортепиано негармоничностью, которая возникает из-за конечной жесткости струн, их неоднородности, наличия продольных и крутильных колебаний и др.

    Исследуемый звук синтезировался как сумма его обертонов: X(t)=ΣA(n)sin
    Для слуховых экспериментов было выбраны следующие соотношения начальных фаз для всех обертонов:
    - А - синусоидальная фаза, начальная фаза была принята равной нулю для всех обертонов φ(n,0) = 0;
    - Б - альтернативная фаза (синусоидальная для четных и косинусоидальная для нечетных), начальная фаза φ(n,0)=π/4[(-1)n+1];
    - С - случайное распределение фаз; начальные фазы при этом изменялись случайным образом в интервале от 0 до 2π.

    В первой серии экспериментов все сто обертонов имели одинаковые амплитуды, различались только их фазы (основной тон 55 Гц). При этом прослушиваемые тембры получились различными:
    - в первом случае (А), прослушивалась отчетливая периодичность;
    - во- втором (Б), тембр был ярче и прослушивалась еще одна высота тона на октаву выше первой (правда высота не была четкой);
    - в третьем (С) - тембр получился более равномерный.

    Необходимо заметить - вторая высота прослушивалась только в наушниках, при прослушивании через громкоговорители все три сигнала отличались только тембром (сказывалась реверберация).

    Это явление - изменение высоты тона при изменении фазы некоторых составляющих спектра - можно объяснить тем, что при аналитическом представлении преобразования Фурье сигнала типа Б, его можно представить как сумму двух комбинаций обертонов: сто обертонов с фазой типа А, и пятьдесят обертонов с фазой, отличающейся на 3π/4, и амплитудой больше в √2. Этой группе обертонов слух назначает отдельную высоту тона. Кроме того, при переходе от соотношения фаз А к фазам типа В смещается центроид спектра (максимум энергии) в сторону высоких частот, поэтому тембр кажется ярче.

    Аналогичные эксперименты со сдвигом фаз отдельных групп обертонов также приводят к появлению дополнительной (менее ясной) виртуальной высоты тона. Это свойство слуха связано с тем, что слух сравнивает звук с определенным имеющимся у него образцом музыкального тона, и если какие-то гармоники выпадают из типичного для данного образца ряда, то слух выделяет их отдельно, и назначает им отдельную высоту.

    Таким образом, результаты исследований Галембо, Аскенфельда и др. показали, что фазовые изменения в соотношениях отдельных обертонов достаточно отчетливо слышны как изменения тембра, и в некоторых случаях - высоты тона.

    Особенно это проявляется при прослушивании реальных музыкальных тонов фортепиано, в которых амплитуды обертонов убывают с увеличением их номера, имеют место особая форма огибающей спектра (формантной структуры), и отчетливо выраженная негармоничность спектра (т.е. сдвиг частот отдельных обертонов по отношению к гармоническому ряду).

    Во временной области наличие негармоничности приводит к дисперсии, то есть высокочастотные компоненты распространяются по струне с большей скоростью, чем низкочастотные, и волновая форма сигнала изменяется. Наличие небольшой негармоничности в звуке (0,35%) добавляет некоторую теплоту, жизненность звучания, однако, если эта негармоничность становиться большой, в звучании становятся слышны биения и другие искажения.

    Негармоничность приводит также к тому, что если в начальный момент фазы обертонов находились в детерминированных соотношениях, то при ее наличии соотношения фаз со временем становятся случайными, пиковая структура волновой формы сглаживается, и тембр становится более равномерным - это зависит от степени негармоничности. Поэтому мгновенное измерение регулярности соотношения фаз между соседними обертонами может служить индикатором тембра.

    Таким образом, эффект фазового перемешивания за счет негармоничности проявляется в некотором изменении восприятия высоты тона и тембра. Необходимо заметить, что эти эффекты слышны при прослушивании на близком расстоянии от деки (в позиции пианиста) и при близком расположении микрофона, причем слуховые эффекты различаются при прослушивании в наушниках и через громкоговорители. В реверберационном окружении сложный звук с высоким пик фактором (что соответствует высокой степени регуляризации фазовых соотношений) говорит о близости источника звука, поскольку по мере удаления от него фазовые отношения приобретают все более случайный характер за счет отражений в помещении. Этот эффект может служит причиной разных оценок звучания пианистом и слушателем, а также разного тембра звука, записанного микрофоном у деки и у слушателя. Чем ближе, тем выше регуляризация фаз между обертонами и более определенная высота тона, чем дальше, тем более равномерный тембр и менее четкая высота.

    Работы по оценке влияния фазовых соотношений на восприятие тембра музыкального звука сейчас активно изучаются в различных центрах (например, в ИРКАМе), и можно ожидать в ближайшее время новых результатов.

  5. Тембр и общие принципы распознавания слуховых образов

    Тембр является идентификатором физического механизма образования звука по ряду признаков, он позволяет выделить источник звука (инструмент или группу инструментов), и определить его физическую природу.

    Это отражает общие принципы распознавания слуховых образов, в основе которых, как считает современная психоакустика, лежат принципы гештальт-психологии (geschtalt, нем. - "образ"), которая утверждает, что для разделения и распознавания различной звуковой информации, приходящей к слуховой системе от разных источников в одно и то же время (игра оркестра, разговор многих собеседников и др.) слуховая система (как и зрительная) использует некоторые общие принципы:

    - сегрегация - разделение на звуковые потоки, т.е. субъективное выделение определенной группы звуковых источников, например, при музыкальной полифонии слух может отслеживать развитие мелодии у отдельных инструментов;
    - подобие - звуки, похожие по тембру, группируются вместе и приписываются одному источнику, например, звуки речи с близкой высотой основного тона и похожим тембром определяются, как принадлежащие одному собеседнику;
    - непрерывность - слуховая система может интерполировать звук из единого потока через маскер, например, если в речевой или музыкальный поток вставить короткий отрезок шума, слуховая система может не заметить его, звуковой поток будет продолжать восприниматься как непрерывный;
    - "общая судьба" - звуки, которые стартуют и останавливаются, а также изменяются по амплитуде или частоте в определенных пределах синхронно, приписываются одному источнику.

    Таким образом, мозг производит группировку поступившей звуковой информации как последовательную, определяя распределение по времени звуковых компонент в рамках одного звукового потока, так и параллельную, выделяя частотные компоненты присутствующие и изменяющиеся одновременно. Кроме того, мозг все время проводит сравнение поступившей звуковой информации с "записанными" в процессе обучения в памяти звуковыми образами.Сравнивая поступившие сочетания звуковых потоков с имеющимися образами, он или легко их идентифицирует, если они совпадают с этими образами, или, в случае неполного совпадения, приписывает им какие-то особые свойства (например, назначает виртуальную высоту тона, как в звучании колоколов).

    Во всех этих процессах распознавание тембра играет принципиальную роль, поскольку тембр является механизмом, с помощью которого экстрактируются из физических свойств признаки, определяющие качество звука: они записываются в памяти, сравниваются с уже записанными, и затем идентифицируются в определенных зонах коры головного мозга.

    Слуховые зоны мозга

    Тембр - ощущение многомерное, зависящее от многих физических характеристик сигнала и окружающего пространства. Были проведены работы по шкалированию тембра в метрическом пространстве (шкалы - это различные спектрально временные характеристики сигнала, см. вторую часть статьи в предыдущем номере).

    В последние годы, однако, появилось понимание, что классификация звуков в субъективно воспринимаемом пространстве не соответствует обычному ортогональному метрическому пространству, там происходит классификация по "субпространствам", связанным с вышеуказанными принципами, которые и не метрические, и не ортогональные.

    Разделяя звуки по этим субпространствам, слуховая система определяет "качество звука", то есть тембр, и решает, к какой категории отнести эти звуки. Однако следует отметить, что все множество субпространств в субъективно воспринимаемом звуковом мире строится на основе информации о двух параметрах звука из внешнего мира - интенсивности и времени, а частота определяется временем прихода одинаковых значений интенсивности. Тот факт, что слух разделяет поступившую звуковую информацию сразу по нескольким субъективным субпространствам, повышает вероятность того, что в каком-то из них она может быть распознана. Именно на выделение этих субъективных субпространств, в которых происходит распознавание тембров и других признаков сигналов, и направлены усилия ученых в настоящее время.

    Заключение

    Подводя некоторые итоги, можно сказать, что основными физическими признаками, по которым определяется тембр инструмента, и его изменение во времени, являются:
    - выстраивание амплитуд обертонов в период атаки;
    - изменение фазовых соотношений между обертонами от детерминированных к случайным (в частности, за счет негармоничности обертонов реальных инструментов);
    - изменение формы спектральной огибающей во времени во все периоды развития звука: атаки, стационарной части и спада;
    - наличие нерегулярностей спектральной огибающей и положение спектрального центроида (максимума

    Спектральной энергии, что связано с восприятием формант) и их изменение во времени;

    Общий вид спектральных огибающих и их изменение во времени

    Наличие модуляций - амплитудной (тремоло) и частотной (вибрато);
    - изменение формы спектральной огибающей и характера ее изменения во времени;
    - изменение интенсивности (громкости) звучания, т.е. характера нелинейности звукового источника;
    - наличие дополнительных признаков идентификации инструмента, например, характерный шум смычка, стук клапанов, скрип винтов на рояле и др.

    Разумеется, все это не исчерпывает перечень физических признаков сигнала, определяющих его тембр.
    Поиски в этом направлении продолжаются.
    Однако при синтезе музыкальных звуков необходимо учитывать все признаки для создания реалистичного звучания.

    Вербальное (словесное) описание тембра

    Если для оценки высоты звуков имеются соответствующие единицы измерения: психофизические (мелы), музыкальные (октавы, тоны, полутоны, центы); есть единицы для громкости (соны, фоны), то для тембров такие шкалы построить невозможно, поскольку это понятие многомерное. Поэтому, наряду с описанными выше поисками корреляции восприятия тембра с объективными параметрами звука, для характеристики тембров музыкальных инструментов пользуются словесными описаниями, подобранными по признакам противоположности: яркий - тусклый, резкий - мягкий и др.

    В научной литературе имеется большое количество понятий, связанных с оценкой тембров звука. Например, анализ терминов, принятых в современной технической литературе, позволил выявить наиболее часто встречающиеся термины, показанные в таблице. Были сделаны попытки выявить самые значимые среди них, и провести шкалирование тембра по противоположным признакам, а также связать словесное описание тембров с некоторыми акустическими параметрами.

    Основные субъективные термины для описания тембра, используемые в современной международной технической литературе (статистический анализ 30 книг и журналов).

    Acidlike - кислый
    forceful - усиленный
    muffled - заглушенный
    sober - трезвый (рассудительный)
    antique - старинный
    frosty - морозный
    mushy - пористый
    soft - мягкий
    arching - выпуклый
    full - полный
    mysterious - загадочный
    solemn - торжественный
    articulate - разборчивый
    fuzzy - пушистый
    nasal - носовой
    solid - твердый
    austere - суровый
    gauzy - тонкий
    neat - аккуратный
    somber - мрачный
    bite, biting - кусачий
    gentle - нежный
    neutral - нейтральный
    sonorous - звучный
    bland - вкрадчивый
    ghostlike - призрачный
    noble - благородный
    steely - стальной
    blaring - ревущий
    glassy - стеклянный
    nondescript - неописуемый
    strained - натянутый
    bleating - блеющий
    glittering - блестящий
    nostalgic - ностальгический
    strident - скрипучий
    breathy - дыхательный
    gloomy - унылый
    ominous - зловещий
    stringent - стесненный
    bright - яркий
    grainy - зернистый
    ordinary - ординарный
    strong - сильный
    brilliant - блестящий
    grating - скрипучий
    pale - бледный
    stuffy - душный
    brittle - подвижный
    grave - серьезный
    passionate - страстный
    subdued - смягченный
    buzzy - жужжащий
    growly - рычащий penetrating - проникающий
    sultry - знойный
    calm - спокойный
    hard - жесткий
    piercing - пронзительный
    sweet - сладкий
    carrying - полетный
    harsh - грубый
    pinched - ограниченный
    tangy - запутанный
    centered - концентрированный
    haunting - преследующий
    placid - безмятежный
    tart - кислый
    clangorous - звенящий
    hazy - смутный
    plaintive - заунывный
    tearing - неистовый
    clear, clarity - ясный
    hearty - искренний
    ponderous - увесистый
    tender - нежный
    cloudy - туманный
    heavy - тяжелый
    powerful - мощный
    tense - напряженный
    coarse - грубый
    heroic - героический
    prominent - выдающийся
    thick - толстый
    cold - холодный
    hoarse - хриплый
    pungent - едкий
    thin - тонкий
    colorful - красочный
    hollow - пустой
    pure - чистый
    threatening - угрожающий
    colorless - бесцветный
    honking - гудящий(автомобильный гудок)
    radiant - сияющий
    throaty - хриплый
    cool - прохладный
    hooty - гудящий
    raspy - дребезжащий
    tragic - трагичный
    crackling - трескучий
    husky - сиплый
    rattling - грохочущий
    tranquil - успокаивающий
    crashing - ломаный
    incandescence - накаленный
    reedy - пронзительный
    transparent - прозразный
    creamy - сливочный
    incisive - резкий
    refined - рафинированый
    triumphant - торжествующий
    crystalline - кристаллический
    inexpressive - невыразительный
    remote - удаленный
    tubby - бочкообразный
    cutting - резкий
    intense - интенсивный
    rich - богатый
    turbid - мутный
    dark - темный
    introspective - углубленный
    ringing - звенящий
    turgid - высокопарный
    deep - глубокий
    joyous - радостный
    robust - грубый
    unfocussed - несфокусированный
    delicate - деликатный
    languishing - печальный
    rough - терпкий
    unobtrsuive - скромный
    dense - плотный
    light - светлый
    rounded - круглый
    veiled - завуалированный
    diffuse - рассеяный
    limpid - прозрачный
    sandy - песочный
    velvety - бархатистый
    dismal - отдаленный
    liquid - водянистый
    savage - дикий
    vibrant - вибрирующий
    distant - отчетливый
    loud - громкий
    screamy - кричащий
    vital - жизненный
    dreamy - мечтательный
    luminous - блестящий
    sere - сухой voluptuous - пышный(роскошный)
    dry - сухой
    lush (luscious) - сочный
    serene, serenity - спокойный
    wan - тусклый
    dull - скучный
    lyrical - лирический
    shadowy - затененный
    warm - теплый
    earnest - серьезный
    massive - массивный
    sharp - резкий
    watery - водянистый
    ecstatic - экстатический
    meditative - созерцательный
    shimmer - дрожащий
    weak - слабый
    ethereal - эфирный
    melancholy - меланхоличный
    shouting - кричащий
    weighty - тяжеловесный
    exotic - экзотический
    mellow - мягкий
    shrill - пронзительный
    white - белый
    expressive - выразительный
    melodious - мелодичный
    silky - шелковистый
    windy - ветряный
    fat - жирный
    menacing - угрожающий
    silvery - серебристый
    wispy - тонкий
    fierce - жесткий
    metallic - металлический
    singing - певучий
    woody - деревянный
    flabby - дряблый
    мisty - неясный
    sinister - зловещий
    yearning - тоскливый
    focussed - сфокусированный
    mournful - траурный
    slack - расхлябанный
    forboding - отталкивающий
    muddy - грязный
    smooth - гладкий

    Однако, главная проблема состоит в том, что нет однозначного понимания различных субъективных терминов, описывающих тембр. Приведенный вперечне перевод далеко не всегда соответствует тому техническому смыслу, которое вкладывается в каждое слово при описании различных аспектов оценки тембра.

    В нашей литературе раньше был стандарт на основные термины, но сейчас дела обстоят совсем печально, поскольку не ведется работа по созданию соответствующей русскоязычной терминологии, и употребляется много терминов в разных, иногда прямо противоположных, значениях.
    В связи с этим AES при разработке серии стандартов по субъективным оценкам качества аудиоаппаратуры, систем звукозаписи и др. начал приводить определения субъективных терминов в приложениях к стандартам, а так как стандарты создаются в рабочих группах, включающих ведущих специалистов разных стран, то эта очень важная процедура приводит к согласованному пониманию основных терминов для описания тембров.
    В качестве примера приведу стандарт AES-20-96 - "Рекомендации для субъективной оценки громкоговорителей", - где дано согласованное определение таких терминов, как "открытость", "прозрачность", "ясность", "напряженность", "резкость" и др.
    Если эта работа будет систематически продолжаться, то, возможно, основные термины для словесного описания тембров звуков различных инструментов и других звуковых источников будут иметь согласованные определения, и будут однозначно или достаточно близко пониматься специалистами разных стран.



top