Константы равновесия Kр, Кс и Кх связаны между собой соотношением. Химическое равновесие. Закон действующих масс. Константа химического равновесия и способы ее выражения Расчёт константы равновесия методами статистической термодинамики

Константы равновесия Kр, Кс и Кх связаны между собой соотношением. Химическое равновесие. Закон действующих масс. Константа химического равновесия и способы ее выражения Расчёт константы равновесия методами статистической термодинамики

Большинство химических реакций обратимы, т.е. протекают одновременно в противоположных направлениях. В тех случаях, когда прямая и обратная реакции идут с одинаковой скоростью, наступает химическое равновесие. Например, в обратимой гомогенной реакции: H 2 (г) + I 2 (г) ↔ 2HI(г) соотношение скоростей прямой и обратной реакций согласно закону действующих масс зависит от соотношения концентраций реагирующих веществ, а именно: скорость прямой реакции: υ 1 = k 1 [Н 2 ]. Скорость обратной реакции: υ 2 = k 2 2 .

Если H 2 и I 2 – исходные вещества, то в первый момент скорость прямой реакции определяется их начальными концентрациями, а скорость обратной реакции равна нулю. По мере израсходования H 2 и I 2 и образования HI скорость прямой реакции уменьшается, а скорость обратной реакции возрастает. Спустя некоторое время обе скорости уравниваются, и в системе устанавливается химическое равновесие, т.е. число образующихся и расходуемых молекул HI в единицу времени становится одинаковым.

Так как при химическом равновесии скорости прямой и обратной реакций равны V 1 = V 2 , то k 1 = k 2 2 .

Поскольку k 1 и k 2 при данной температуре постоянны, то их отношение будет постоянным. Обозначая его через K, получим:

К – называется константой химического равновесия, а приведенное уравнение – законом действующих масс (Гульдберга - Ваале).

В общем случае для реакции вида аА+bB+…↔dD+eE+… константа равновесия равна . Для взаимодействия между газообразными веществами часто пользуются выражением , в котором реагенты представлены равновесными парциальными давлениями p. Для упомянутой реакции .

Состояние равновесия характеризует тот предел, до которого в данных условиях реакция протекает самопроизвольно (∆G<0). Если в системе наступило химическое равновесие, то дальнейшее изменение изобарного потенциала происходить не будет, т.е. ∆G=0.

Соотношение между равновесными концентрациями не зависит от того, какие вещества берутся в качестве исходных (например, H 2 и I 2 или HI), т.е. к состоянию равновесия можно подойти с обеих сторон.

Константа химического равновесия зависит от природы реагентов и от температуры; от давления (если оно слишком высокое) и от концентрации реагентов константа равновесия не зависит.

Влияние на константу равновесия температуры, энтальпийного и энтропийного факторов . Константа равновесия связана с изменением стандартного изобарно-изотермического потенциала химической реакции ∆G o простым уравнением ∆G o =-RT ln K.

Из него видно, что большим отрицательным значениям ∆G o (∆G o <<0) отвечают большие значения К, т.е. в равновесной смеси преобладают продукты взаимодействия. Если же ∆G o характеризуется большими положительными значениями (∆G o >>0), то в равновесной смеси преобладают исходные вещества. Указанное уравнение позволяет по величине ∆G o вычислить К, а затем и равновесные концентрации (парциальные давления) реагентов. Если учесть, что ∆G o =∆Н o -Т∆S o , то после некоторого преобразования получим . Из этого уравнения видно, что константа равновесия очень чувствительна к изменению температуры. Влияние на константу равновесия природы реагентов определяет ее зависимость от энтальпийного и энтропийного факторов.

Принцип Ле Шателье

Состояние химического равновесия сохраняется при данных неизменных условиях любое время. При изменении же условий состояние равновесия нарушается, так как при этом скорости противоположных процессов изменяются в разной степени. Однако спустя некоторое время система снова приходит в состояние равновесия, но уже отвечающее новым изменившимся условиям.

Смещение равновесия в зависимости от изменения условий в общем виде определяется принципом Ле-Шателье (или принципом подвижного равновесия): если на систему, находящуюся в равновесии, оказывать воздействие извне путем изменения какого-либо из условий, определяющих положение равновесия, то оно смещается в направлении того процесса, протекание которого ослабляет эффект произведенного воздействия.

Так, повышение температуры вызывает смещение равновесия в направлении того из процессов, течение которого сопровождается поглощением тепла, а понижение температуры действует в противоположном направлении. Подобно этому повышение давления смещает равновесие в направлении процесса, сопровождающегося уменьшением объема, а понижение давления действует в противоположную сторону. Например, в равновесной системе 3Н 2 +N 2 2H 3 N, ∆H o = -46,2 кДж повышение температуры усиливает разложение H 3 N на водород и азот, так как этот процесс эндотермический. Повышение давления смещает равновесие в сторону образования H 3 N, ибо при этом уменьшается объем.

Если в систему, находящуюся в состоянии равновесия, добавить некоторое количество какого-либо из веществ, участвующих в реакции (или наоборот, удалить из системы), то скорости прямой и обратной реакций изменяются, но постепенно снова уравниваются. Иными словами, система снова приходит к состоянию химического равновесия. В этом новом состоянии равновесные концентрации всех веществ, присутствующих в системе, будут отличаться от первоначальных равновесных концентраций, но соотношение между ними останется прежним. Таким образом, в системе, находящейся в состоянии равновесия, нельзя изменить концентрацию одного из веществ, не вызвав изменения концентраций всех остальных.

В соответствии с принципом Ле Шателье введение в равновесную систему дополнительных количеств какого-либо реагента вызывает сдвиг равновесия в том направлении, при котором концентрация этого вещества уменьшается и соответственно увеличивается концентрация продуктов его взаимодействия.

Изучение химического равновесия имеет большое значение как для теоретических исследований, так и для решения практических задач. Определяя положение равновесия для различных температур и давлений, можно выбрать наиболее благоприятные условия проведения химического процесса. При окончательном выборе условий проведения процесса учитывают также их влияние на скорость процесса.

Пример 1. Вычисление константы равновесия реакции по равновесным концентрациям реагирующих веществ.

Вычислите константу равновесия реакции А+В 2С, если равновесные концентрации [А]=0,3моль∙л -1 ; [В]=1,1моль∙л -1 ; [С]=2,1моль∙л -1 .

Решение. Выражение константы равновесия для данной реакции имеет вид: . Подставим сюда указанные в условии задачи равновесные концентрации: =5,79.

Пример 2 . Вычисление равновесных концентраций реагирующих веществ. Реакция протекает по уравнению А+2В С.

Определите равновесные концентрации реагирующих веществ, если исходные концентрации веществ А и В соответственно равны 0,5 и 0,7 моль∙л -1 , а константа равновесия реакции К р =50.

Решение. На каждый моль веществ А и В образуется 2 моль вещества С. Если понижение концентрации веществ А и В обозначить через Х моль, то увеличение концентрации вещества будет равно 2Х моль. Равновесные концентрации реагирующих веществ будут:

С А =(о,5-х)моль∙л -1 ; С В =(0,7-х)моль∙л -1 ; С С =2х моль∙л -1

х 1 =0,86; х 2 =0,44

По условию задачи справедливо значение х 2 . Отсюда равновесные концентрации реагирующих веществ равны:

С А =0,5-0,44=0,06моль∙л -1 ; С В =0,7-0,44=0,26моль∙л -1 ; С С =0,44∙2=0,88моль∙л -1 .

Пример 3. Определение изменения энергии Гиббса ∆G o реакции по значению константы равновесия К р. Рассчитайте энергию Гиббса и определите возможность протекания реакции СО+Cl 2 =COCl 2 при 700К, если константа равновесия равна Кр=1,0685∙10 -4 . Парциальное давление всех реагирующих веществ одинаково и равно 101325Па.

Решение. ∆G 700 =2,303∙RT .

Для данного процесса:

Так как ∆Gо<0, то реакция СО+Cl 2 COCl 2 при 700К возможна.

Пример 4 . Смещение химического равновесия. В каком направлении сместится равновесие в системе N 2 +3H 2 2NH 3 -22ккал:

а) при увеличении концентрации N 2 ;

б) при увеличении концентрации Н 2 ;

в) при повышении температуры;

г)при уменьшении давления?

Решение. Увеличение концентрации веществ, стоящих в левой части уравнения реакции, по правилу Ле-Шателье должно вызвать процесс, стремящийся ослабить оказанное воздействие, привести к уменьшению концентраций, т.е. равновесие сместится вправо (случаи а и б).

Реакция синтеза аммиака – экзотермическая. Повышение температуры вызывает смещение равновесия влево – в сторону эндотермической реакции, ослабляющей оказанное воздействие (случай в).

Уменьшение давления (случай г) будет благоприятствовать реакции, ведущей к увеличению объема системы, т.е. в сторону образования N 2 и Н 2 .

Пример 5. Во сколько раз изменится скорость прямой и обратной реакции в системе 2SO 2 (г) + О 2 (г) 2SO 3 (r) если объем газовой смеси уменьшится в три раза? В какую сторону сместится равновесие системы?

Решение. Обозначим концентрации реагирующих веществ: =а, =b, =с. Согласно закону действующих масс, скорости прямой и обратной реакций до изменения объема равны

v пр = Ка 2 b, v обр = К 1 с 2

После уменьшения объема гомогенной системы в три раза концентрация каждого из реагирующих веществ увеличится в три раза: = 3а, [О 2 ] = 3b; = 3с. При новых концентрациях скорости v" np прямой и обратной реакций:

v" np = K(3a) 2 (3b) = 27 Ka 2 b; v o 6 p = K 1 (3c) 2 = 9K 1 c 2 .

;

Следовательно, скорость прямой реакции увеличилась в 27 раз, а обратной - только в девять раз. Равновесие системы сместилось в сторону образования SO 3 .

Пример 6. Вычислите, во сколько раз увеличится скорость реакции, протекающей в газовой фазе, при повышении температуры от 30 до 70 0 С, если температурный коэффициент реакции равен 2.

Решение. Зависимость скорости химической реакции от температуры определяется эмпирическим правилом Вант-Гоффа по формуле

Следовательно, скорость реакции при 70°С большескорости реакции при 30° С в 16 раз.

Пример 7. Константа равновесия гомогенной системы

СО(г) + Н 2 О(г) СО 2 (г) + Н 2 (г) при 850°С равна 1. Вычислите концентрации всех веществ при равновесии, если исходные концентрации: [СО] ИСХ = 3 моль/л, [Н 2 О] ИСХ = 2 моль/л.

Решение. При равновесии скорости прямой и обратной реакций равны, а отношение констант этих скоростей постоянно и называется константой равновесия данной системы:

V np = К 1 [СО][Н 2 О]; V o б p = К 2 [СО 2 ][Н 2 ];

В условии задачи даны исходные концентрации, тогда как в выражение К р входят только равновесные концентрации всех веществ системы. Предположим, что к моменту равновесия концентрация [СО 2 ] Р = х моль/л. Согласно уравнению системы число молей образовавшегося водорода при этом будет также х моль/л. По столько же молей моль/л) СО и Н 2 О расходуется для образования по х молей СО 2 и Н 2 . Следовательно, равновесные концентрации всех четырех веществ (моль/л):

[СО 2 ] Р = [Н 2 ] р = х; [СО] Р = (3 –х); P =(2-х).

Зная константу равновесия, находим значение х, а затем исходные концентрации всех веществ:

; х 2 =6-2х-3х + х 2 ; 5х = 6, л = 1,2 моль/л.

Химическим равновесием называется такое состояние обратимой химической реакции

aA + b B = c C + d D,

при котором с течением времени не происходит изменения концентраций реагирующих веществ в реакционной смеси. Состояние химического равновесия характеризуется константой химического равновесия :

где C i – концентрации компонентов в равновесной идеальной смеси.

Константа равновесия может быть выражена также через равновесные мольные доли X i компонентов:

Для реакций, протекающих в газовой фазе, константу равновесия удобно выражать через равновесные парциальные давления P i компонентов:

Для идеальных газов P i = C i RT и P i = X i P , где P – общее давление, поэтому K P , K C и K X связаны следующим соотношением:

K P = K C (RT) c+d–a–b = K X P c+d–a–b . (9.4)

Константа равновесия связана с r G o химической реакции:

(9.5)

(9.6)

Изменение r G или r F в химической реакции при заданных (не обязательно равновесных) парциальных давлениях P i или концентрациях C i компонентов можно рассчитать по уравнению изотермы химической реакции (изотермы Вант-Гоффа ):

. (9.7)

. (9.8)

Согласно принципу Ле Шателье , если на систему, находящуюся в равновесии, оказать внешнее воздействие, то равновесие сместится так, чтобы уменьшить эффект внешнего воздействия. Так, повышение давления сдвигает равновесие в сторону уменьшения количества молекул газа. Добавление в равновесную смесь какого-либо компонента реакции сдвигает равновесие в сторону уменьшения количества этого компонента. Повышение (или понижение) температуры сдвигает равновесие в сторону реакции, протекающей с поглощением (выделением) теплоты.

Количественно зависимость константы равновесия от температуры описывается уравнением изобары химической реакции (изобары Вант-Гоффа )

(9.9)

и изохоры химической реакции (изохоры Вант-Гоффа )

. (9.10)

Интегрирование уравнения (9.9) в предположении, что r H реакции не зависит от температуры (что справедливо в узких интервалах температур), дает:

(9.11)

(9.12)

где C – константа интегрирования. Таким образом, зависимость ln K P от 1 должна быть линейной, а наклон прямой равен – r H /R .

Интегрирование в пределах K 1 , K 2 , и T 1, T 2 дает:

(9.13)

(9.14)

По этому уравнению, зная константы равновесия при двух разных температурах, можно рассчитать r H реакции. Соответственно, зная r H реакции и константу равновесия при одной температуре, можно рассчитать константу равновесия при другой температуре.

ПРИМЕРЫ

CO(г) + 2H 2 (г) = CH 3 OH(г)

при 500 K. f G o для CO(г) и CH 3 OH(г) при 500 К равны –155.41 кДж. моль –1 и –134.20 кДж. моль –1 соответственно.

Решение. G o реакции:

r G o = f G o (CH 3 OH) – f G o (CO) = –134.20 – (–155.41) = 21.21 кДж. моль –1 .

= 6.09 10 –3 .

Пример 9-2. Константа равновесия реакции

равна K P = 1.64 10 –4 при 400 o C. Какое общее давление необходимо приложить к эквимолярной смеси N 2 и H 2 , чтобы 10% N 2 превратилось в NH 3 ? Газы считать идеальными.

Решение. Пусть прореагировало моль N 2 . Тогда

N 2 (г) + 3H 2 (г) = 2NH 3 (г)
Исходное количество 1 1
Равновесное количество 1– 1–3 2 (Всего: 2–2)
Равновесная мольная доля:

Следовательно, K X = и K P = K X . P –2 = .

Подставляя = 0.1 в полученную формулу, имеем

1.64 10 –4 =, откуда P = 51.2 атм.

Пример 9-3. Константа равновесия реакции

CO(г) + 2H 2 (г) = CH 3 OH(г)

при 500 K равна K P = 6.09 10 –3 . Реакционная смесь, состоящая из 1 моль CO, 2 моль H 2 и 1 моль инертного газа (N 2) нагрета до 500 K и общего давления 100 атм. Рассчитать состав равновесной смеси.

Решение. Пусть прореагировало моль CO. Тогда

CO(г) + 2H 2 (г) = CH 3 OH(г)
Исходное количество: 1 2 0
Равновесное количество: 1– 2–2
Всего в равновесной смеси: 3–2 моль компонентов + 1 моль N 2 = 4–2 моль
Равновесная мольная доля

Следовательно, K X = и K P = K X . P –2 = .

Таким образом, 6.09 10 –3 = .

Решая это уравнение, получаем = 0.732. Соответственно, мольные доли веществ в равновесной смеси равны: = 0.288, = 0.106, = 0.212 и = 0.394.

Пример 9-4. Для реакции

N 2 (г) + 3H 2 (г) = 2NH 3 (г)

при 298 К K P = 6.0 10 5 , а f H o (NH 3) = –46.1 кДж. моль –1 . Оценить значение константы равновесия при 500 К.

Решение. Стандартная мольная энтальпия реакции равна

r H o = 2 f H o (NH 3) = –92.2 кДж. моль –1 .

Согласно уравнению (9.14), =

Ln (6.0 10 5) + = –1.73, откуда K 2 = 0.18.

Отметим, что константа равновесия экзотермической реакции уменьшается с ростом температуры, что соответствует принципу Ле Шателье.

ЗАДАЧИ

  1. При 1273 К и общем давлении 30 атм в равновесной смеси
  2. CO 2 (г) + C(тв) = 2CO(г)

    содержится 17% (по объему) CO 2 . Сколько процентов CO 2 будет содержаться в газе при общем давлении 20 атм? При каком давлении в газе будет содержаться 25% CO 2 ?

  3. При 2000 o C и общем давлении 1 атм 2% воды диссоциировано на водород и кислород. Рассчитать константу равновесия реакции
  4. H 2 O(г) = H 2 (г) + 1/2O 2 (г) при этих условиях.

  5. Константа равновесия реакции
  6. CO(г) + H 2 O(г) = CO 2 (г) + H 2 (г)

    при 500 o C равна K p = 5.5. Смесь, состоящая из 1 моль CO и 5 моль H 2 O, нагрели до этой температуры. Рассчитать мольную долю H 2 O в равновесной смеси.

  7. Константа равновесия реакции
  8. N 2 O 4 (г) = 2NO 2 (г)

    при 25 o C равна K p = 0.143. Рассчитать давление, которое установится в сосуде объемом 1 л, в который поместили 1 г N 2 O 4 при этой температуре.

  9. Сосуд объемом 3 л, содержащий 1.79 10 –2 моль I 2 , нагрели до 973 K. Давление в сосуде при равновесии оказалось равно 0.49 атм. Считая газы идеальными, рассчитать константу равновесия при 973 K для реакции
  10. I 2 (г) = 2I (г).

  11. Для реакции
  12. при 250 o C r G o = –2508 Дж. моль –1 . При каком общем давлении степень превращения PCl 5 в PCl 3 и Cl 2 при 250 o C составит 30%?

  13. Для реакции
  14. 2HI(г) = H 2 (г) + I 2 (г)

    константа равновесия K P = 1.83 10 –2 при 698.6 К. Сколько граммов HI образуется при нагревании до этой температуры 10 г I 2 и 0.2 г H 2 в трехлитровом сосуде? Чему равны парциальные давления H 2 , I 2 и HI?

  15. Сосуд объемом 1 л, содержащий 0.341 моль PCl 5 и 0.233 моль N 2 , нагрели до 250 o C. Общее давление в сосуде при равновесии оказалось равно 29.33 атм. Считая все газы идеальными, рассчитать константу равновесия при 250 o C для протекающей в сосуде реакции
  16. PCl 5 (г) = PCl 3 (г) + Cl 2 (г)

  17. Константа равновесия реакции
  18. CO(г) + 2H 2 (г) = CH 3 OH(г)

    при 500 K равна K P = 6.09 10 –3 . Рассчитать общее давление, необходимое для получения метанола с 90% выходом, если CO и H 2 взяты в соотношении 1: 2.

  19. При 25 o C f G o (NH 3) = –16.5 кДж. моль –1 . Рассчитать r G реакции образования NH 3 при парциальных давлениях N 2 , H 2 и NH 3 , равных 3 атм, 1 атм и 4 атм соответственно. В какую сторону реакция будет идти самопроизвольно при этих условиях?
  20. Экзотермическая реакция
  21. CO(г) + 2H 2 (г) = CH 3 OH(г)

    находится в равновесии при 500 K и 10 бар. Если газы идеальные, как повлияют на выход метанола следующие факторы: а) повышение T ; б) повышение P ; в) добавление инертного газа при V = const; г) добавление инертного газа при P = const; д) добавление H 2 при P = const?

  22. Константа равновесия газофазной реакции изомеризации борнеола (C 10 H 17 OH) в изоборнеол равна 0.106 при 503 K. Смесь 7.5 г борнеола и 14.0 г изоборнеола поместили в сосуд объемом 5 л и выдерживали при 503 K до достижения равновесия. Рассчитать мольные доли и массы борнеола и изоборнеола в равновесной смеси.
  23. Равновесие в реакции
  24. 2NOCl(г) = 2NO(г) + Cl 2 (г)

    устанавливается при 227 o C и общем давлении 1.0 бар, когда парциальное давление NOCl равно 0.64 бар (изначально присутствовал только NOCl). Рассчитать r G o для реакции. При каком общем давлении парциальное давление Cl 2 будет равно 0.10 бар?

  25. Рассчитать общее давление, которое необходимо приложить к смеси 3 частей H 2 и 1 части N 2 , чтобы получить равновесную смесь, содержащую 10% NH 3 по объему при 400 o C. Константа равновесия для реакции
  26. N 2 (г) + 3H 2 (г) = 2NH 3 (г)

    при 400 o C равна K = 1.60 10 –4 .

  27. При 250 o C и общем давлении 1 атм PCl 5 диссоциирован на 80% по реакции
  28. PCl 5 (г) = PCl 3 (г) + Cl 2 (г).

    Чему будет равна степень диссоциации PCl 5 , если в систему добавить N 2 , чтобы парциальное давление азота было равно 0.9 атм? Общее давление поддерживается равным 1 атм.

  29. При 2000 o C для реакции
  30. N 2 (г) + O 2 (г) = 2NO(г)

    K p = 2.5 10 –3 . В равновесной смеси N 2 , O 2 , NO и инертного газа при общем давлении 1 бар содержится 80% (по объему) N 2 и 16% O 2 . Сколько процентов по объему составляет NO? Чему равно парциальное давление инертного газа?

  31. Рассчитать стандартную энтальпию реакции, для которой константа равновесия
    а) увеличивается в 2 раза, б) уменьшается в 2 раза при изменении температуры от 298 К до 308 К.
  32. Зависимость константы равновесия реакции 2C 3 H 6 (г) = C 2 H 4 (г) + C 4 H 8 (г) от температуры между 300 К и 600 К описывается уравнением

ln K = –1.04 –1088 /T +1.51 10 5 /T 2 .

При некоторой температуре энтальпийный и энтропийный факторы реакции могут уравновешиваться, тогда устанавливается состояние равновесия, которому отвечает равенство ∆ r G Т = 0. В этом состоянии свободная энергия системы минимальна, а возможность протекания прямой и обратной реакции равновероятна, при этом в единицу времени получается столько же продуктов реакции, сколько их расходуется в обратной реакции образования исходных веществ. В таких условиях парциальные давления и концентрации всех компонентов реакции будут постоянными во времени и во всех точках системы и называются равновесными давлениями и концентрациями.

Если реакция протекает в изохорно-изотермических условиях, то условием химического равновесия является равенство Δ r F Т = 0. Из уравнений (1.12) и (1.15) следует, что при равновесии химической реакции a A(г)+b B(г)+ d D(к) ↔ e E(г)+ f F(г)

r G 0 Т = - RT ln(p e E равн p f F равн /p a A равн p b B равн) . (2.1)

Если данная гетерогенная реакция с участием газообразных компонентов протекает при постоянном объеме, то

r F 0 Т = - RT ln(c e E равн c f F равн /c a A равн c b B равн) . (2.2)

Если реакция a A(р)+b B(р)+d D(к)=e E(р)+f F(р) протекает в идеальном растворе, то из (1.12а) следует:

r G 0 Т =∆ r F 0 Т = - RT ln(c e E равн c f F равн /c a A равн c b B равн) . (2.3)

Поскольку величины ∆ r F 0 Т и ∆ r G 0 Т для данной температуры есть величины постоянные, то эти уравнения справедливы, если под знаком логарифма находятся постоянные для данной температуры выражения, получившие название констант равновесия К с и К р :

К с = (c e E равн c f F равн /c a A равн c b B равн) (2.4)

К р = (p e E равн p f F равн /p a A равн p b B равн) . (2.5)

Уравнения (2.4) и (2.5) являются математическим выражением закона действующих масс.

Для реакций с газообразными компонентами связь между К р и К с выражается уравнением: К р = К с (RT ) ∆ν , (2.6) где ∆ν =(e+f-a-b ) – изменение числа молей газов в результате реакции, а R = 0,082 атм . л . моль -1. К -1 . Следует обратить внимание, что в выражение для К с и К р не входят компоненты в более конденсированном состоянии (например, вещество D в кристаллическом состоянии).

Константу равновесия К р можно выразить также через равновесные количества молей газообразных компонентов n i равн и общее давление P 0 , при котором проводят изобарно-изотермическую реакцию. Учитывая, что парциальное давление i -ого компонента пропорционально молярной доле этого компонента p i = (n i n i )P 0 , из уравнения (2.5) получаем:

К р =(p e E равн p f F равн /p a A равн p b B равн)=(n e E равн n f F равн /n a A равн n b B равн)(P 0 n i ) ∆ν (2.6)

где Σn i = (n E равн + n F равн + n A равн + n B равн)–сумма равновесных молей всех газообразных компонентов.

Объединяя уравнения (2.1), (2.2), (2.3) с уравнениями (2.4) и (2.5) получаем выражения, часто применяемые для расчетов:

r G 0 Т = - RT lnК р и(2.7)

r F 0 Т = - RT lnК с для газофазныхреакций. (2.8)

r G 0 Т =- RT lnК с для реакций в конденсированных системах. (2.7а)

Таким образом, рассчитав энергию Гиббса реакции для заданной температуры, можно по данным формулам рассчитать К с и К р приэтой температуре. Чем больше величина константы равновесия в данных условиях, тем больше значения равновесных концентраций продуктов реакции, следовательно, тем выше выход продуктов реакции. Под выходом продукта реакции понимают отношение количества (или массы) продукта реакции, которое образовалось в данных условиях, к максимально возможному (теоретически) количеству (или массе) этого продукта при условии полного превращения какого-либо исходного вещества в продукт реакции. Очевидно, что полное (100%) превращение исходного вещества в продукт с термодинамических позиций невозможно, так как при этом константа равновесия становится бесконечно большой.

Под степенью превращения исходного вещества понимают отношение количества (или массы) исходного вещества, которое прореагировало в данных условиях, к начальному количеству (или массе) этого вещества. Если выход продукта стремится к единице (100%), то степень превращения исходного вещества также приближается к единице (100%).

Значения К р и К с при данной температуре не зависят от величин парциальных давлений и концентраций компонентов, а также общего давления в системе, но зависят от температуры. Зависимость константы равновесия от температуры можно выразить в дифференциальной форме:

(d ln K p / dT ) = ∆ r H 0 /(RT 2) , (2.9) где ∆ r Н 0 - стандартная энтальпия реакции, которую в первом приближении считают не зависящей от температуры. Как видно из (2.9), с ростом температуры константа равновесия экзотермической реакции уменьшается, а константа равновесия эндотермической реакции увеличивается.

При интегрировании выражения (2.9) с учетом указанного приближения получаем (при Т 2 > Т 1) формулу

ln(K 2 /K 1) = (∆ r H 0 /R )(1/T 1 – 1/T 2) , (2.10)

из которой следует, что чем больше абсолютная величина теплового эффекта реакции, тем сильнее изменяется значение константы равновесия с изменением температуры. Эту формулу можно использовать также для расчета величины К равн при какой-либо Т 3 , если известны значения К 2 и К 1 при температурах Т 2 и Т 1 .

Пример 10. Запишите выражение дляК с и К р и рассчитайте К р и К с реакции С(к) + СО 2 (г) = 2СО(г) при 298 К и при 1000 К. Сделайте вывод по полученным значениям о выходе продукта реакции при данных температурах и о влиянии температуры на величину константы равновесия.

Решение. Запишем выражения для констант равновесия данной реакции, принимая во внимание, что реакция гетерогенная и вещество графит С(к) находится в твердом состоянии:

К р = p 2 CO равн /p CO 2равн; К с = с 2 CO равн /с CO 2равн

Из уравнения (2.7) имеем K p =exp(-∆G 0 Т /RT) . Используя результаты примера 5, рассчитаем К р для 298 К и 1000 К:

К р 298 = exp(-120 . 10 3 /8,31 . 298)= ехр(-48,5) << 1;

K p 1000 =exp(+316/8,31 . 1000)= ехр(0,038) = 1,039.

По формуле (2.6) находим К с = К р /(RT ) ∆ν = 1,039/0,082 . 1000 = 0,013, так как ∆ν = 2-1=1. По полученным данным можно сделать вывод, что при 298 К константа равновесия К р стремится к нулю, что говорит о том, что в равновесной смеси практически отсутствуют продукты реакции и равновесие реакции сильно смещено в сторону исходных веществ. С ростом температуры величина константы равновесия возрастает (реакция эндотермическая) и при 1000 К К р уже больше 1, то есть в равновесной смеси начинают преобладать продукты реакции, их выход растет с ростом Т.

Пример 11. Для некоторой реакции А(г) = 2В(г), идущей при постоянных давлении и температуре, константа равновесия К р равна 0,02 при 400 К и 4,0 при 600 К. Определите по этим данным ∆ r H 0 298 , ∆ r S 0 298 и ∆ r G 0 298 этой реакции, а также К р при 800 К.

Решение. Пренебрегая зависимостью ∆ r H 0 и ∆ r S 0 от температуры и используя выражения (1.14) и (2.7) составим систему из двух уравнений с двумя неизвестными (T 1 =400 K, T 2 =600 K):

r G 0 Т 1 =∆ r H 0 298 T 1 ∆ r S 0 298 = -RT 1 lnК р 1 или x – 400y = -8,31.400 ln2 . 10 -2

r G 0 Т 2 =∆ r H 0 298 T 2 ∆ r S 0 298 = -RT 2 lnК р 2 или x – 600y = -8,31 . 600 ln4

Откуда х = ∆ r H 0 298 = 52833(Дж)= 52,833 кДж; y =∆ r S 0 298 =99,575Дж/К.

Значение К р при 800 К рассчитаем по формуле (2.10). Имеем:

ln(K 800 /K 400) = ln(K 800 /0,02)= (52833/8,31)(1/400 -1/800) = 7,95. Откуда К 800 = 56,55.

Пример 10. Определите температуру, при которой в реакции СаСО 3 (к) = СаО(к) + СО 2 (г) равновесное парциальное давление СО 2 р СО2 = 10 4 Па.

Решение. Для данной гетерогенной реакции запишем выражение для константы равновесия: К р = р СО2 , то есть константа равновесия равна относительному парциальному давлению СО 2 при данной температуре. Для искомой температуры К р =р СО2 = 10 4 /10 5 =0,1.Пренебрегая зависимостью ∆ r H 0 и ∆ r S 0 от температуры, воспользуемся формулами (1.14) и (2.7) и приравняем друг другу два выражения для ∆ r G 0 Т : ∆ r G 0 Т = ∆ r H 0 298 T r S 0 298 = -RT lnК р . Значения ∆ r H 0 298 и ∆ r S 0 298 определяем, как рассмотрено выше, по табличным данным: ∆rH 0 298 =178,1 кДж; ∆rS 0 298 =160,5 Дж. Имеем:

178,1 . 10 3 –Т . 160,5

∆rG 0 Т = -8,31Т ln0,1

Решая полученную систему уравнений относительно Т, находим Т =991К

Количественная характеристика, показывающая направление реакции и смещение концентрации веществ, называется константой равновесия химической реакции. Константа равновесия зависит от температуры и природы реагентов.

Обратимые и необратимые реакции

Все реакции можно разделить на два типа:

  • обратимые , одновременно протекающие в двух взаимно противоположных направлениях;
  • необратимые , протекающие в одном направлении с полным расходом хотя бы одного исходного вещества.

При необратимых реакциях обычно образуются нерастворимые вещества в виде осадка или газа. К таким реакциям относятся:

  • горение:

    C 2 H 5 OH + 3O 2 → 2CO 2 + H 2 O;

  • разложение:

    2KMnO 4 → K 2 MnO 4 + MnO 2 + H 2 O;

  • присоединение с образованием осадка или газа:

    BaCl 2 + Na 2 SO 4 → BaSO 4 ↓ + 2NaCl.

Рис. 1. Образование осадка BaSO 4 .

Обратимые реакции возможны только в определённых неизменных условиях. Исходные вещества дают новое вещество, которое тут же распадается на составные части и собирается вновь. Например, в результате реакции 2NO + O 2 ↔ 2NO 2 оксид азота (IV) легко разлагается на оксид азота (II) и кислород.

Равновесие

Через определённое время скорость обратимой реакции замедляется. Достигается химическое равновесие - состояние, при котором не происходит изменения концентрации исходных веществ и продуктов реакции с течением времени, так как скорость прямой и обратной реакций уравниваются. Равновесие возможно только в гомогенных системах, то есть все реагирующие вещества являются либо жидкостями, либо газами.

Рассмотрим химическое равновесие на примере реакции взаимодействия водорода с йодом:

  • прямая реакция -

    H 2 + I 2 ↔ 2HI;

  • обратная реакция -

    2HI ↔ H 2 + I 2 .

Как только смешиваются два реагента - водород и йод - йодоводорода ещё не существует, так как простые вещества только вступают в реакцию. Большое количество исходных веществ активно реагируют друг с другом, поэтому скорость прямой реакции будет максимальной. При этом обратная реакция не протекает, и скорость её равна нулю.

Скорость прямой реакции можно выразить графически:

ν пр = k пр ∙ ∙ ,

где k пр - константа скорости прямой реакции.

Со временем реагенты расходуются, их концентрация снижается. Соответственно, скорость прямой реакции уменьшается. Одновременно с этим увеличивается концентрация нового вещества - йодоводорода. При накоплении он начинает разлагаться, и скорость обратной реакции повышается. Её можно выразить как

ν обр = k обр ∙ 2 .

Йодоводород в квадрате, так как коэффициент молекулы равен двум.

В определённый момент скорости прямой и обратной реакции уравниваются. Наступает состояние химического равновесия.

Рис. 2. График зависимости скорости реакции от времени.

Равновесие можно сместить либо в сторону исходных веществ, либо в сторону продуктов реакции. Смещение под воздействием внешних факторов называется принципом Ле Шателье. На равновесие влияют температура, давление, концентрация одного из веществ.

Расчёт константы

В состоянии равновесия обе реакции идут, но при этом концентрации веществ находятся в равновесии (образуются равновесные концентрации), так как уравновешенны скорости (ν пр = ν обр).

Химическое равновесие характеризуется константой химического равновесия, которая выражается сводной формулой:

K p = k пр / k обр = const.

Константы скорости реакции можно выразить через соотношение скорости реакции. Возьмём условное уравнение обратной реакции:

aA + bB ↔ cC + dD.

Тогда скорости прямой и обратной реакции будут равны:

  • ν пр = k пр ∙ [A] p a ∙ [B] p b
  • ν обр = k обр ∙ [C] p c ∙ [D] p d .

Соответственно, если

ν пр = ν обр,

k пр ∙ [A] p a ∙ [B] p b = k обр ∙ [C] p c ∙ [D] p d .

Отсюда можно выразить соотношение констант:

k обр / k пр = [C] p c ∙ [D] p d / [A] p a ∙ [B] p b .

Это соотношение равно константе равновесия:

K p = [C] p c ∙ [D] p d / [A] p a ∙ [B] p b .

Рис. 3. Формула константы равновесия.

Величина показывает, во сколько раз скорость прямой реакции больше скорости обратной реакции.

Что мы узнали?

Реакции в зависимости от конечных продуктов классифицируются на обратимые и необратимые. Обратимые реакции протекают в обе стороны: исходные вещества образуют конечные продукты, которые разлагаются на исходные вещества. В ходе реакции скорости прямой и обратной реакций уравновешиваются. Такое состояние называется химическим равновесием. Оно может быть выражено как соотношение произведения равновесных концентраций продуктов реакции к произведению разновесных концентраций исходных веществ.

Тест по теме

Оценка доклада

Средняя оценка: 4.8 . Всего получено оценок: 193.

Константа химического равновесия - характеристика химической реакции, по значению которой можно судить о направлении процесса при исходном соотношении концентраций реагирующих веществ, о максимально возможном выходе продукта реакции при тех или иных условиях.

Константа химического равновесия определяется по закону действующих масс . Ее значения находят расчетно или на основании экспериментальных данных. Константа химического равновесия зависит от природы реагентов и от температуры.

Константа равновесия и энергия Гиббса

Константа равновесия ~K связана со свободной энергией Гиббса ~\Delta G следующим образом:

~\Delta G=-RT\cdot\ln K.

Приведенное уравнение позволяет по величине ΔG° вычислить К, а затем и равновесные концентрации (парциальные давления) реагентов.

Из этого уравнения видно, что константа равновесия очень чувствительна к изменению температуры (если выразить отсюда константу, то температура будет в показателе степени). Для эндотермических процессов повышение температуры отвечает увеличению константы равновесия, для экзотермических - ее уменьшению. От давления константа равновесия не зависит, кроме случаев очень большого давления (от 100 Па).

Зависимость константы равновесия от энтальпийного и энтропийного факторов свидетельствует о влиянии на нее природы реагентов.

Константа равновесия и скорость реакции

Можно выразить константу равновесия через скорость реакции. При этом константа равновесия определяется как

~K=\frac{k_1}{k_{-1}},

где ~k_1 - константа скорости прямой реакции, ~k_{-1} - константа скорости обратной реакции.


Самое обсуждаемое
Нефертити: история жизни египетской царицы Нужна помощь по изучению какой-либы темы Нефертити: история жизни египетской царицы Нужна помощь по изучению какой-либы темы
Мигрирующие генетические элементы (мгэ) Мигрирующие генетические элементы (мгэ)
«Поет зима аукает» анализ Сергей есенин поёт зима аукает «Поет зима аукает» анализ Сергей есенин поёт зима аукает


top