Лабораторная работа. Изучение движения тела по окружности под действием силы упругости и силы тяжести. Определение массы тела путем взвешивания на весах Движение по окружности лабораторная работа

Лабораторная работа. Изучение движения тела по окружности под действием силы упругости и силы тяжести. Определение массы тела путем взвешивания на весах Движение по окружности лабораторная работа

.

I Подготовительный этап

На рисунке схематически показаны качели, известные под названием «гигантские шаги». Найдите центростремительную силу, радиус, ускорение и скорость обращения человека на качелях вокруг столба. Длина веревки равна 5 м, масса человека равна 70 кг. Столб и веревка при обращении образуют угол 300. Определите период, если частота обращения качелей равна 15 мин-1.

Подсказка: На тело, обращающееся по окружности, действуют сила тяжести и сила упругости веревки. Их равнодействующая сообщает телу центростремительное ускорение.

Результаты расчетов внесите в таблицу:

Время обращения, с

Число оборотов

Период обращения, с

Радиус обращения, м

Масса тела, кг

центростремительная сила, Н

скорость обращения, м/с

центростремительное ускорение, м/с2

II . Основной этап

Цель работы:

Приборы и материалы:

1. Перед опытом подвешивают на нити к лапке штатива груз, предварительно взвешенный на весах.

2. Под висящим грузом положите лист бумаги с начерченной на нем окружностью радиусом 15-20 см. Центр окружности расположите на отвесной линии, проходящей через точку подвеса маятника.

3. У точки подвеса нить берут двумя пальцами и аккуратно приводят маятник во вращательное движение , так чтобы радиус вращения маятника совпадал с радиусом нарисованной окружности.

4. Приведите маятник во вращение и подсчитывая число оборотов замерьте время, за которое эти обороты произошли.

5. Результаты измерений и вычислений запишите в таблицу.

6. Равнодействующая силы тяжести и силы упругости, найденная в ходе эксперимента, рассчитывается из параметров кругового движения груза.

С другой стороны, центростремительную силу можно определить из пропорции

Здесь масса и радиус уже известны из предыдущих измерений и, чтобы определить центробежную силу вторым способом надо измерить высоту точки подвеса над вращающимся шариком. Для этого оттягивают шарик на расстояние, равное радиусу вращения и измеряют расстояние по вертикали от шарика до точки подвеса.

7. Сравните результаты, полученные двумя разными способами и сделайте вывод.

III Контрольный этап

При отсутствии в домашних условиях весов цель работы и оборудование может быть изменено.

Цель работы: измерение линейной скорости и центростремительного ускорения при равномерном движении по окружности

Приборы и материалы:

1. Возьмите иголку с двойной ниткой длиной 20-30 см. Острие иголки воткните в ластик, маленькую луковицу или пластилиновый шарик. Вы получите маятник.

2. Поднимите свой маятник за свободный конец нити над листом бумаги, лежащим на столе, и приведите его в равномерное вращение по окружности, изображенной на листе бумаги. Измерьте радиус окружности, по которой движется маятник.

3. Добейтесь устойчивого вращения шарика по заданной траектории и по часам с секундной стрелкой зафиксируйте время для 30 оборотов маятника. По известным формулам рассчитайте модули линейной скорости и центростремительного ускорения.

4. Составьте для записи результатов таблицу и заполните ее.

Использованная литература:

1. Фронтальные лабораторные занятия по физике в средней школе . Пособие для учителей под редакцией. Изд. 2-е. - М., «Просвещение», 1974 г.

2. Шилов работы в школе и дома: механика.-М.: «Просвещение», 2007

«Изучение движения тела по окружности под действием двух сил»

Цель работы: определение центростремительного ускорения шарика при его равномерном движении по окружности.

Оборудование: 1. штатив с муфтой и лапкой;

2. лента измерительная;

3. циркуль;

4. динамометр лабораторный;

5. весы с разновесами;

6. шарик на нити;

7. кусочек пробки с отверстием;

8. лист бумаги;

9. линейка.

Порядок выполнения работы:

1. Определяем массу шарика на весах с точностью до 1 г.

2. Нить продеваем сквозь отверстие и зажимаем пробку в лапке штатива (рис 1)

3. Вычерчиваем на листе бумаги окружность, радиус которой около 20 см. Измеряем радиус с точностью до 1 см.

4. Штатив с маятником располагаем так, чтобы продолжение шнура проходило через центр окружности.

5. Взяв нить пальцами у точки подвеса, вращаем маятник так, чтобы шарик описывал окружность, равную начерченной на бумаге.

6. Отсчитываем время, за которое маятник совершает, к примеру, N=50 оборотов. Рассчитываем период обращения T =

7. Определяем высоту конического маятника, Для этого измеряем расстояние по вертикали от центра шарика до точки подвеса.

8. Находим модуль нормального ускорения по формулам:

a n 1 = a n 2 =

a n 1 = a n 2 =

9. Оттягиваем горизонтально расположенным динамометром шарик на расстояние, равное радиусу окружности, и измеряем модуль составляющей F

Затем вычисляем ускорение по формуле a n 3 = a n 3 =

10. Результаты измерений заносим в таблицу.

№ опыта R м N ∆t c Т c h м m кг F Н a n1 м/с 2 a n 2 м/с 2 a n 3 м/с 2

Рассчитайте относительную погрешность вычисленияa n 1 и запишите ответ в виде: a n 1 = a n 1ср ± ∆ a n 1ср a n 1 =

Сделайте вывод:

Контрольные вопросы:

1. К какому виду движения относится движение шарика на нити в лабораторной работе? Почему?

2. Сделайте чертёж в тетради и укажите правильно названия сил. Назовите точки приложения этих сил.

3. Какие законы механики выполняются при движении тела в этой работе? Изобразите графически силы и запишите правильно законы

4. Почему сила упругости F, измеренная в опыте, равна результирующей сил приложенных к телу? Назовите закон.


Мы знаем из учебника (стр.15-16), что при равномерном движении по окружности скорость частицы не меняется по величине. На самом же деле с физической точки зрения это движение ускоренное, так как направление скорости непрерывно меняется во времени. При этом скорость в каждой точке практически направлена по касательной (рис. 9 в учебнике на стр. 16). В этом случае ускорение характеризует быстроту изменения направления скорости. Оно все время направлено к центру окружности, по которой движется частица. По этой причине его принято называть центростремительным ускорением.

Это ускорение можно вычислить по формуле:

Быстроту движения тела по окружности характеризуют числом полных оборотов, совершаемых в единицу времени. Это число называется частотой вращения. Если тело делает v оборотов в секунду, то время, за которое совершается один оборот,

секунд. Это время называется периодом вращения

Чтобы вычислить скорость движения тела по окружности, надо путь, проходимый телом за один оборот, (он равен длине

окружности) поделить на период:

в этой работе мы

будем наблюдать за движением шарика, подвешенного на ните и движущегося по окружности.

Пример выполнения работы.

№ 1. Изучение движения тела по окружности

Цель работы

Определить центростремительное ускорение шарика при его равномерном движении по окружности.

Теоретическая часть

Эксперименты проводятся с коническим маятником. Небольшой шарик движется по окружности радиусом R. При этом нить АВ, к которой прикреплён шарик, описывает поверхность прямого кругового конуса. Из кинематических соотношений следует, что аn = ω 2 R = 4π 2 R/T 2 .

На шарик действуют две силы: сила тяжести m и сила натяжения нити (рис. Л.2, а). Согласно второму закону Ньютона m = m + . Разложив силу на составляющие 1 и 2 , направленные по радиусу к центру окружности и по вертикали вверх, второй закон Ньютона запишем следующим образом: m = m + 1 + 2 . Тогда можно записать: mа n = F 1 . Отсюда а n = F 1 /m.

Модуль составляющей F 1 можно определить, пользуясь подобием треугольников ОАВ и F 1 FB: F 1 /R = mg/h (|m| = | 2 |). Отсюда F 1 = mgR/h и a n = gR/h.

Сопоставим все три выражения для а n:

а n = 4 π 2 R/T 2 , а n =gR/h, а n = F 1 /m

и убедимся, что числовые значения центростремительного ускорения, полученные тремя способами, примерно одинаковы.

Оборудование

Штатив с муфтой и лапкой, лента измерительная, циркуль, динамометр лабораторный, весы с разновесами, шарик на нити, кусочек пробки с отверстием, лист бумаги, линейка.

Порядок выполнения работы

1. Определите массу шарика на весах с точностью до 1 г.

2. Нить проденьте сквозь отверстие в пробке и зажмите пробку в лапке штатива (рис. Л.2, б).

3. Начертите на листе бумаги окружность, радиус которой около 20 см. Измерьте радиус с точностью до 1 см.

4. Штатив с маятником расположите так, чтобы продолжение нити проходило через центр окружности.

5. Взяв нить пальцами у точки подвеса, вращайте маятник так, чтобы шарик описывал такую же окружность, как и начерченная на бумаге.

6. Отсчитайте время, за которое маятник совершает заданное число (например, в интервале от 30 до 60) оборотов.

7. Определите высоту конического маятника. Для этого измерьте расстояние по вертикали от центра шарика до точки подвеса (считаем h ≈ l).

9. Оттяните горизонтально расположенным динамометром шарик на расстояние, равное радиусу окружности, и измерьте модуль составляющей 1 .

Затем вычислите ускорение по формуле

Сравнивая полученные три значения модуля центростремительного ускорения, убеждаемся, что они примерно одинаковы.

4.2.1. Подготовить весы и, с разрешения лаборанта, произвести взвешивание тела. Определить инструментальную ошибку весов.

4.2.2. Записать результат измерений в стандартном виде: m=(m±Δm) [размерность].
5. ВЫВОД

Указать, достигнута ли цель работы.

Записать результаты измерений массы тела двумя способами.

5.3. Сравнить результаты. Сделать вывод
6. КОНТРОЛЬНЫЕ ВОПРОСЫ

6.1. Что такое инертная масса, гравитационная масса, как они определяются? Сформулируйте принцип эквивалентности инертной и гравитационной массы.
6.2. Что такое прямые измерения и косвенные измерения? Приведите примеры прямых и косвенных измерений.
6.3. Что такое абсолютная ошибка измеряемой величины?
6.4. Что такое относительная ошибка измеряемой величины?
6.5. Что такое доверительный интервал измеряемой величины?
6.6. Перечислите виды ошибок и дайте их краткую характеристику.
6.7. Что такое класс точности прибора? Что такое цена деления прибора?
Как определяется инструментальная погрешность результата измерений?
6.8. Как рассчитываются относительная ошибка и абсолютная ошибка косвенного измерения.
6.9. Как производится стандартная запись окончательного результата измерений? Какие требования при этом должны выполняться?

6.10. Проведите измерение линейного размера тела штангенциркулем. Запишите результат измерения в стандартном виде.

6.11. Проведите измерение линейного размера тела микрометром. Запишите результат.

Лабораторная работа №2.

Изучение движения тела по окружности

1. ЦЕЛЬ РАБОТЫ . Определение центростремительного ускорения шарика при его равномерном движении по окружности.

2. ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ. Штатив с муфтой и лапкой, линейка, рулетка, шарик на нити, лист бумаги, секундомер.

КРАТКАЯ ТЕОРИЯ

Эксперимент проводится с коническим маятником (рис.1). Пусть шарик, подвешенный на нити, описывает окружность радиусом R . На шарик действуют две силы: сила тяжести и сила натяжения нити. Их результирующая создает центростремительное ускорение, направленное к центру окружности. Модуль ускорения можно определить, используя кинематику:

(1)

Для определения ускорения необходимо измерить радиус окружности R и период Т обращения шарика по окружности.
Центростремительное ускорение можно определить также, используя 2-й закон Ньютона:

Направление координатных осей выберем так, как показано на рис.1. Спроецируем уравнение (2) на выбранные оси:

Из уравнений (3) и (4) и из подобия треугольников получим:

Рис.1. . (5)

Таким образом, используя уравнения (1), (3) и (5), центростремительное ускорение можно определить тремя способами:

. (6)

Модуль составляющей F х можно непосредственно измерить динамометром. Для этого оттягиваем горизонтально расположенным динамометром шарик на расстояние, равное радиусу R окружности (рис.1), и определяем показание динамометра. При этом сила упругости пружины уравновешивает горизонтальную составляющую F х и равна ей по величине.

В данной работе ставится задача убедится экспериментально, что числовые значения центростремительного ускорения, полученные тремя способами, будут одинаковыми (одинаковыми в пределах абсолютных ошибок).

РАБОЧЕЕ ЗАДАНИЕ

1. Определяем массу m шарика на весах. Результат взвешивания и инструментальную ошибку ∆m записать в таблицу 1.

2. Вычерчиваем на листе бумаги окружность радиусом около 20 см. Измеряем данный радиус, определяем инструментальную ошибку и результаты записываем в таблицу 1.

3. Штатив с маятником располагаем так, чтобы продолжение нити проходило через центр окружности.

4. Взять нить пальцами у точки подвеса и вращать маятник так, чтобы шарик описывал такую же окружность как и окружность, начерченную на бумаге.

5. Отсчитываем время t , за которое шарик совершает заданное число оборотов (к примеру, N = 30) и оцениваем ошибку ∆t измерения. Результаты записываем в таблицу 1.

6. Определяем высоту h конического маятника и инструментальную ошибку ∆h . Расстояние h измеряется по вертикали от центра шарика до точки подвеса. Результаты записываем в таблицу 1.

7. Оттягиваем горизонтально расположенным динамометром шарик на расстояние, равное радиусу R окружности, и определяем показание динамометра F = F х и инструментальную ошибку ∆F . Результаты записываем в таблицу 1.

Таблица 1.

m m R ∆R t t N h h F F g ∆g π ∆ π
г г мм мм с с мм мм Н Н м/с 2 м/с 2

8. Рассчитываем период Т обращения шарика по окружности и ошибку ∆Т :

.

9. По формулам (6) рассчитываем значения центростремительного ускорения тремя способами и абсолютные ошибки косвенных измерений центростремительного ускорения.

ВЫВОД

В выводе записать в стандартном виде величины центростремительного ускорения, полученные тремя способами. Сравнить полученные величины (см. раздел «Введение. Ошибки измерений»). Сделать вывод.

КОНТРОЛЬНЫЕ ВОПРОСЫ

6.1. Что такое период Т

6.2. Как можно экспериментально определить период Т обращения шарика по окружности?

6.3. Что такое центростремительное ускорение, как его можно выразить через период обращения и через радиус окружности?

6.4. Что такое конический маятник. Какие силы действуют на шарик конического маятника?

6.5. Записать 2-й закон Ньютона для конического маятника.

6.6. Какие три способа определения центростремительного ускорения предлагаются в данной лабораторной работе?

6.7. С помощью каких измерительных устройств определяются значения физических величин, приведенных в таблице 1?

6.8. Какой из трех способов определения центростремительного ускорения дает наиболее точное значение измеряемой величины?

Лабораторная работа №3


Похожая информация.



Самое обсуждаемое
Изучение движения тела по окружности под действием силы упругости и силы тяжести Изучение движения тела по окружности под действием силы упругости и силы тяжести
Теория пространственных аномалий Теория пространственных аномалий
История науки о резании металлов История науки о резании металлов


top