Образование и свойства этилена. Физические и химические свойства этилена. Гидрогенизация и горение этилена

Образование и свойства этилена. Физические и химические свойства этилена. Гидрогенизация и горение этилена

Этилен является простейшим из органических соединений, известных как алкены. Это бесцветный имеющий сладковатый вкус и запах. Природные источники включают природный газ и нефть, он также является естественным гормоном в растениях, в которых он ингибирует рост и способствует созреванию плодов. Применение этилена является распространенным явлением в промышленной органической химии. Он производится путем нагревания природного газа, температура плавления составляет 169,4 °С, кипения - 103, 9 °С.

Этилен: особенности структуры и свойства

Углеводороды представляют собой молекулы, содержащие водород и углерод. Они сильно различаются с точки зрения количества одинарных и двойных связей и структурной ориентации каждого компонента. Одним из простейших, но биологически и экономически выгодных углеводородов является этилен. Он поставляется в газообразном виде, является бесцветным и легковоспламеняющимся. Он состоит из двух двойных скрепленных атомов углерода с атомами водорода. Химическая формула имеет вид C 2 H 4 . Структурная форма молекулы является линейной из-за наличия двойной связи в центре.
Этилен имеет сладковатый мускусный запах, который позволяет легко идентифицировать вещество в воздухе. Это касается газа в чистом виде: запах может исчезать при смешивании с другими химическими веществами.

Схема применения этилена

Этилен используют в двух основных категориях: в качестве мономера, из которого построены большие углеродные цепи, и в качестве исходного материала для других двух-углеродных соединений. Полимеризации - это повторяющиеся объединения множества мелких молекул этилена в более крупные. Этот процесс происходит при высоких давлениях и температурах. Области применения этилена многочисленны. Полиэтилен - это полимер, который используется особенно массово в производстве упаковочных пленок, проволочных покрытий и пластиковых бутылок. Еще одно применение этилена в качестве мономера касается формирования линейных α-олефинов. Этилен является исходным материалом для приготовления ряда двух-углеродных соединений, таких как этанол (технический спирт), (антифриз, и пленки), ацетальдегида и винил хлорида. Кроме этих соединений, этилен с бензолом образует этилбензол, который используется в производстве пластмасс и Рассматриваемое вещество является одним из простейших углеводородов. Однако свойства этилена делают его биологически и хозяйственно значимым.

Коммерческое использование

Свойства этилена дают хорошую коммерческую основу для большого количества органических (содержащих углерод и водород) материалов. Одиночные молекулы этилена могут быть соединены вместе для получения полиэтилена (что означает много молекул этилена). Полиэтилен используется для изготовления пластмасс. Кроме того, он может быть использован для изготовления моющих средств и синтетических смазочных материалов, которые представляют собой химические вещества, используемые для уменьшения трения. Применение этилена для получения стиролов актуально в процессе создания резины и защитной упаковки. Кроме того, он используется в обувной промышленности, особенно это касается спортивной обуви, а также при производстве автомобильных покрышек. Применение этилена является коммерчески важным, а сам газ является одним из наиболее часто производимых углеводородов в глобальном масштабе.

Опасность для здоровья

Этилен представляет опасность для здоровья прежде всего потому, что он является легковоспламеняющимся и взрывоопасным. Он также может действовать как наркотик при низких концентрациях, вызывая тошноту, головокружение, головные боли и потерю координации движения. При более высоких концентрациях он действует как анестетик, вызывая потерю сознания, и другим раздражителям. Все эти негативные моменты могут быть причиной для беспокойства в первую очередь для людей, непосредственно работающих с газом. Количество этилена, с которым большинство людей сталкивается в повседневной жизни, как правило, сравнительно небольшое.

Реакции этилена

1) Окисление. Это добавление кислорода, например, при окислении этилена до окиси этилена. Он используется в производстве этиленгликоля (1,2-этандиола), который применяется в качестве незамерзающей жидкости и в производстве полиэфиров путем конденсационной полимеризации.

2) Галогенирование - реакции с этиленом фтора, хлора, брома, йода.

3) Хлорирование этилена в виде 1,2-дихлорэтана и последующая конверсия 1,2-дихлорэтана в винилхлорид мономер. 1,2-дихлорэтан является полезным а также является ценным предшественником в синтезе винилхлорида.

4) Алкилирование - добавление углеводородов по двойной связи, например, синтез этилбензола из этилена и бензола с последующим преобразованием в стирол. Этилбензол является промежуточным для производства стирола, одного из наиболее широко используемых виниловых мономеров. Стирол - мономер, используемый для производства полистирола.

5) Горение этилена. Газ получается путем нагревания и концентрированной серной кислоты.

6) Гидратация - реакция с добавлением воды к двойной связи. Наиболее важным промышленным применением этой реакции является превращение этилена в этанол.

Этилен и горение

Этилен - это газ без цвета, который плохо растворяется в воде. Горение этилена в воздухе сопровождается образованием углекислого газа и воды. В чистом виде газ горит световым диффузионным пламенем. Смешанный с небольшим количеством воздуха, он дает пламя, состоящее из трех отдельных слоев - внутреннего сердечника - несгоревшего газа, сине-зеленого слоя и внешнего конуса, где частично окисленный продукт из предварительно перемешанного слоя сгорают в диффузионном пламени. Результирующее пламя показывает сложную серию реакций, а если к газовой смеси добавляется больше воздуха, постепенно диффузионный слой исчезает.

Полезные факты

1) Этилен является природным растительным гормоном, он влияет на рост, развитие, созревание и старение всех растений.

2) Газ не вреден и не токсичен для человека в определенной концентрации (100-150 мг).

3) Он используется в медицине в качестве обезболивающего средства.

4) Действие этилена замедляется при низких температурах.

5) Характерным свойством является хорошая проникающая способность через большинство веществ, например через картонные упаковочные коробки, деревянные и даже бетонные стены.

6) В то время как он имеет неоценимое значение благодаря своей способности инициировать процесс созревания, он также может быть очень вредным для многих фруктов, овощей, цветов и растений, ускоряя процесс старения и снижая качество продукта и его срок годности. Степень повреждения зависит от концентрации, продолжительности воздействия и температуры.

7) Этилен взрывоопасен при высоких концентрациях.

8) Этилен используется в производстве стекла специального назначения для автомобильной промышленности.

9) Изготовление металлоконструкций: газ используется в качестве кислородно-топливного газа для резки металла, сварки и высокой скорости термического напыления.

10) Нефтепереработка: этилен используется в качестве хладагента, особенно на производстве по сжижению природного газа.

11) Как уже говорилось ранее, этилен является очень реактивным веществом, кроме того, он еще и очень легко воспламеняется. Из соображений безопасности, его обычно транспортируют по специальному отдельному газопроводу.

12) Одним из самых распространенных продуктов, изготовленных непосредственно из этилена, является пластмасса.

Физические свойства

Этан при н. у.- бесцветныйгаз, без запаха. Молярная масса - 30,07. Температура плавления −182,81 °C, кипения -88,63 °C. . Плотность ρ газ. =0,001342 г/см³ или 1,342 кг/м³ (н. у.), ρ жидк. =0,561 г/см³ (T=-100 °C). Константа диссоциации 42 (в воде, прин. у.) [ источник? ] . Давление паров при 0 °С - 2,379 МПа .

Химические свойства

Химическая формула C 2 H 6 (рациональная CН 3 СН 3). Наиболее характерны реакции замещения водорода галогенами, проходящие по свободно радикальному механизму. Термическое дегидрирование этана при 550-650 °С приводит кэтену, при температурах свыше 800 °С - кацетилену(образуется такжебензолисажа). Прямоехлорированиепри 300-450 °С - кэтилхлориду,нитрованиевгазовойфазе даетсмесь(3:1)нитроэтанаинитрометана.

Получение

В промышленности

В промышленности получают из нефтяных и природных газов, где он составляет до 10 % по объему. В России содержание этана в нефтяных газах очень низкое. В США и Канаде (где его содержание в нефтяных и природных газах высоко) служит основным сырьем для полученияэтена.

В лабораторных условиях

Получают из иодметанапореакции Вюрца, изацетата натрияэлектролизомпореакции Кольбе, сплавлениемпропионата натрияс щелочью, изэтилбромидапореакции Гриньяра,гидрированиемэтена(над Pd) илиацетилена(в присутствииНикель Ренея).

Применение

Основное использование этана в промышленности - получение этилена.

Бута́н (C 4 H 10) - органическое соединение класса алканов . В химии название используется в основном для обозначения н-бутана. Такое же название имеет смесь н-бутана и его изомера изобутана CH(CH 3) 3 . Название происходит от корня «бут-» (английское название масляной кислоты - butyric acid ) и суффикса «-ан» (принадлежность к алканам). В больших концентрациях ядовит, вдыхание бутана вызывает дисфункцию лёгочно-дыхательного аппарата. Содержится в природном газе , образуется при крекинге нефтепродуктов , при разделении попутного нефтяного газа , "жирного" природного газа . Как представитель углеводородных газов пожаро- и взрывоопасен, малотоксичен, имеет специфический характерный запах, обладает наркотическими свойствами. По степени воздействия на организм газ относится к веществам 4-го класса опасности (малоопасные) по ГОСТ 12.1.007-76. Вредно воздействует на нервную систему .

Изомерия

Бутан имеет два изомера :

Физические свойства

Бутан - бесцветный горючий газ, со специфическим запахом, легко сжижаемый (ниже 0 °C и нормальном давлении или при повышенном давлении и обычной температуре - легколетучая жидкость). Точка замерзания -138°С (при нормальном давлении). Растворимость в воде - 6,1 мг в 100 мл воды (для н-бутана, при 20 °C, значительно лучше растворяется в органических растворителях ). Может образовывать азеотропную смесь с водой при температуре около 100 °C и давлении 10 атм.

Нахождение и получение

Содержится в газовом конденсате и нефтяном газе (до 12 %). Является продуктом каталитического и гидрокаталитического крекинга нефтяных фракций. В лаборатории может быть получен по реакции Вюрца .

2 C 2 H 5 Br + 2Na → CH 3 -CH 2 -CH 2 -CH 3 + 2NaBr

Сероочистка (демеркаптанизация) бутановой фракции

Прямогонную бутановую фракцию необходимо очищать от сернистых соединений, которые в основном представлены метил- и этил- меркаптанами. Метод очистки бутановой фракции от меркаптанов заключается в щелочной экстракции меркаптанов из углеводородной фракции и последующей регенерации щелочи в присутствии гомогенных или гетерогенных катализаторов кислородом воздуха с выделением дисульфидного масла.

Применение и реакции

При свободнорадикальном хлорировании образует смесь 1-хлор- и 2-хлорбутана. Их соотношение хорошо объясняется разницей в прочности С-Н связей в позиции 1 и 2 (425 and 411 кДж/моль). При полном сгорании на воздухе образует углекислый газ и воду. Бутан применяется в смеси с пропаном в зажигалках, в газовых баллонах в сжиженном состоянии, где он имеет запах, так как содержит специально добавленные одоранты . При этом используются «зимние» и «летние» смеси с различным составом. Теплота сгорания 1 кг - 45,7 МДж (12,72 кВт·ч ).

2C 4 H 10 + 13 O 2 → 8 CO 2 + 10 H 2 O

При недостатке кислорода образуется сажа или угарный газ или то и другое вместе.

2C 4 H 10 + 5 O 2 → 8 C + 10 H 2 O

2C 4 H 10 + 9 O 2 → 8 CO + 10 H 2 O

Фирмой Дюпон разработан метод получения малеинового ангидрида из н-бутана при каталитическом окислении.

2 CH 3 CH 2 CH 2 CH 3 + 7 O 2 → 2 C 2 H 2 (CO) 2 O + 8 H 2 O

н-Бутан - сырьё для получения бутена , 1,3-бутадиена , компонент бензинов с высоким октановым числом. Бутан высокой чистоты и особенно изобутан может быть использован в качестве хладагента в холодильных установках. Производительность таких систем немного ниже, чем фреоновых. Бутан безопасен для окружающей среды, в отличие от фреоновых хладагентов.

В пищевой промышленности бутан зарегистрирован в качестве пищевой добавки E943a , а изобутан - E943b , как пропеллент , например, в дезодорантах .

Этиле́н (по ИЮПАК : этен ) - органическое химическое соединение , описываемое формулой С 2 H 4 . Является простейшим алкеном (олефином ). В природе этилен практически не встречается. Это бесцветный горючий газ со слабым запахом. Частично растворим в воде (25,6 мл в 100 мл воды при 0°C), этаноле (359 мл в тех же условиях). Хорошо растворяется в диэтиловом эфире и углеводородах. Содержит двойную связь и поэтому относится к ненасыщенным или непредельным углеводородам . Играет чрезвычайно важную роль в промышленности, а также является фитогормоном . Этилен - самое производимое органическое соединение в мире ; общее мировое производство этилена в 2008 году составило 113 миллионов тонн и продолжает расти на 2-3 % в год .

Применение

Этилен является ведущим продуктом основного органического синтеза и применяется для получения следующих соединений (перечислены в алфавитном порядке):

    Винилацетат ;

    Дихлорэтан / винилхлорид (3-е место, 12 % всего объёма);

    Окись этилена (2-е место, 14-15 % всего объёма);

    Полиэтилен (1-е место, до 60 % всего объёма);

    Стирол ;

    Уксусная кислота ;

    Этилбензол ;

    Этиленгликоль ;

    Этиловый спирт .

Этилен в смеси с кислородом использовался в медицине для наркоза вплоть до середины 80-х годов ХХ века в СССР и на ближнем Востоке. Этилен является фитогормоном практически у всех растений , среди прочего отвечает за опадание иголок у хвойных.

Основные химические свойства

Этилен - химически активное вещество. Так как в молекуле между атомами углерода имеется двойная связь, то одна из них, менее прочная, легко разрывается, и по месту разрыва связи происходит присоединение, окисление, полимеризация молекул.

    Галогенирование:

CH 2 =CH 2 + Cl 2 → CH 2 Cl-CH 2 Cl

Происходит обесцвечивание бромной воды. Это качественная реакция на непредельные соединения.

    Гидрирование:

CH 2 =CH 2 + H - H → CH 3 - CH 3 (под действием Ni)

    Гидрогалогенирование:

CH 2 =CH 2 + HBr → CH 3 - CH 2 Br

    Гидратация:

CH 2 =CH 2 + HOH → CH 3 CH 2 OH (под действием катализатора)

Эту реакцию открыл A.M. Бутлеров, и она используется для промышленного получения этилового спирта.

    Окисление:

Этилен легко окисляется. Если этилен пропускать через раствор перманганата калия, то он обесцветится. Эта реакция используется для отличия предельных и непредельных соединений.

Окись этилена - непрочное вещество, кислородный мостик разрывается и присоединяется вода, в результате образуется этиленгликоль :

C 2 H 4 + 3O 2 → 2CO 2 + 2H 2 O

    Полимеризация:

nCH 2 =CH 2 → (-CH 2 -CH 2 -) n

Изопрен СН 2 =С(СН 3)-СН=СН 2 , 2-метилбутадиен-1,3 - ненасыщенный углеводород диенового ряда (C n H 2n−2 ) . В нормальных условиях бесцветная жидкость. Он является мономером для натурального каучука и структурной единицей для множества молекул других природных соединений - изопреноидов, или терпеноидов . . Растворим в спирте . Изопрен полимеризуется, давая изопреновые каучуки . Изопрен также вступает в реакцию полимеризации с соединениями винилового ряда.

Нахождение и получение

Натуральный каучук является полимером изопрена - наиболее часто цис-1,4-полиизопреном с молекулярной массой от 100,000 до 1,000,000. В качестве примесей содержит несколько процентов других материалов, таких как белки , жирные кислоты , смолы и неорганические вещества . Некоторые источники натурального каучука называются гуттаперча и состоит из транс-1,4-полиизопрена, структурный изомер , который имеет схожие, но не идентичные свойства. Изопрен производится и выделяется в атмосферу многими видами деревьев (главный из них - дуб ) Годовое производство изопрена растительностью около 600 млн т., причем половина производится тропическими широколистными деревьями, остальное производится кустарниками. После попадания в атмосферу изопрен превращается свободными радикалами (такими как гидроксил (OH) радикал) и в меньшей мере озоном в различные вещества, такие как альдегиды , гидроксипероксиды , органические нитраты и эпоксиды , которые смешиваются с водными каплями, образуя аэрозоли или дымку . Этот механизм деревья используют не только для того, чтобы избежать перегрева листьев Солнцем, но и для защиты от свободных радикалов, особенно озона . Изопрен впервые был получен термической обработкой натурального каучука. Наиболее промышленно доступен как продукт термического крекинга лигроина или масла, а также как побочный продукт при производстве этилена . Производится около 20,000 тонн в год. Около 95% производства изопрена используется для производства цис-1,4-полиизопрена - синтетического варианта природного каучука.

Бутадие́н-1,3 (дивинил) СН 2 =СН-СН=СН 2 - ненасыщенный углеводород , простейший представитель диеновых углеводородов .

Физические свойства

Бутадиен - бесцветный газ с характерным запахом, температура кипения −4,5 °C, температура плавления −108,9 °C, температура вспышки −40 °C, предельно допустимая концентрация в воздухе (ПДК) 0,1 г/м³, плотность 0,650 г/см³ при −6 °C.

Слабо растворим в воде, хорошо растворим в спирте, керосине с воздухом в количестве 1,6-10,8 %.

Химические свойства

Бутадиен склонен к полимеризации , легко окисляется воздухом с образованием перекисных соединений, ускоряющих полимеризацию.

Получение

Бутадиен получают по реакции Лебедева пропусканием этилового спирта через катализатор :

2CH 3 CH 2 OH → C 4 H 6 + 2H 2 O + H 2

Или дегидрогенизацией нормального бутилена :

CH 2 =CH-CH 2 -CH 3 → CH 2 =CH-CH=CH 2 + Н 2

Применение

Полимеризацией бутадиена получают синтетический каучук . Сополимеризацией с акрилонитрилом и стиролом получают АБС-пластик .

Бензо́л (C 6 H 6 , Ph H ) - органическое химическое соединение , бесцветная жидкость с приятным сладковатым запахом . Простейший ароматический углеводород . Бензол входит в состав бензина , широко применяется в промышленности , является исходным сырьём для производства лекарств , различных пластмасс , синтетической резины , красителей. Хотя бензол входит в состав сырой нефти , в промышленных масштабах он синтезируется из других её компонентов. Токсичен , канцерогенен .

Физические свойства

Бесцветная жидкость со своеобразным резким запахом. Температура плавления = 5,5 °C, температура кипения = 80,1 °C, плотность = 0,879 г/см³, молярная масса = 78,11 г/моль. Подобно всем углеводородам бензол горит и образует много копоти. С воздухом образует взрывоопасные смеси, хорошо смешивается с эфирами , бензином и другими органическими растворителями, с водой образует азеотропную смесь с температурой кипения 69,25 °C (91% бензола). Растворимость в воде 1,79 г/л (при 25 °C).

Химические свойства

Для бензола характерны реакции замещения - бензол реагирует с алкенами , хлоралканами , галогенами , азотной и серной кислотами . Реакции разрыва бензольного кольца проходят в жёстких условиях (температура, давление).

    Взаимодействие с хлором в присутствии катализатора:

С 6 H 6 + Cl 2 -(FeCl 3)→ С 6 H 5 Cl + HCl образуется хлорбензол

Катализаторы содействуют созданию активной электрофильной частицы путём поляризации между атомами галогена.

Cl-Cl + FeCl 3 → Cl ઠ - ઠ +

С 6 H 6 + Cl ઠ - -Cl ઠ + + FeCl 3 → [С 6 H 5 Cl + FeCl 4 ] → С 6 H 5 Cl + FeCl 3 + HCl

В отсутствие катализатора при нагревании или освещении идёт радикальная реакция замещения.

С 6 H 6 + 3Cl 2 -(освещение)→ C 6 H 6 Cl 6 образуется смесь изомеров гексахлорциклогексана видео

    Взаимодействие с бромом (чистый):

    Взаимодействие с галогенопроизводными алканов (реакция Фриделя-Крафтса ):

С 6 H 6 + С 2 H 5 Cl -(AlCl 3)→ С 6 H 5 С 2 H 5 + HCl образуется этилбензол

С 6 H 6 + HNO 3 -(H 2 SO 4)→ С 6 H 5 NO 2 + H 2 O

Структура

Бензол по составу относится к ненасыщенным углеводородам (гомологический ряд C n H 2n-6), но в отличие от углеводородов ряда этилена C 2 H 4 проявляет свойства, присущие ненасыщенным углеводородам (для них характерны реакции присоединения) только при жёстких условиях, а вот к реакциям замещения бензол более склонен. Такое «поведение» бензола объясняется его особым строением: нахождением всех связей и молекул на одной плоскости и наличием в структуре сопряжённого 6π-электронного облака. Современное представление об электронной природе связей в бензоле основывается на гипотезе Лайнуса Полинга , который предложил изображать молекулу бензола в виде шестиугольника с вписанной окружностью, подчёркивая тем самым отсутствие фиксированных двойных связей и наличие единого электронного облака, охватывающего все шесть атомов углерода цикла.

Производство

На сегодняшний день существует три принципиально различных способа производства бензола.

    Коксование каменного угля. Этот процесс исторически был первым и служил основным источником бензола до Второй мировой войны. В настоящее время доля бензола, получаемого этим способом, составляет менее 1 %. Следует добавить, что бензол, получаемый из каменноугольной смолы, содержит значительное количество тиофена, что делает такой бензол сырьем, непригодным для ряда технологичных процессов.

    Каталитический риформинг (аромаизинг) бензиновых фракций нефти. Этот процесс является основным источником бензола в США. В Западной Европе, России и Японии этим способом получают 40-60 % от общего количества вещества. В данном процессе кроме бензола образуются толуол и ксилолы . Ввиду того, что толуол образуется в количествах, превышающих спрос на него, его также частично перерабатывают в:

    бензол - методом гидродеалкилирования;

    смесь бензола и ксилолов - методом диспропорционирования;

Пиролиз бензиновых и более тяжелых нефтяных фракций. До 50 % бензола производится этим методом. Наряду с бензолом образуются толуол и ксилолы. В некоторых случаях всю эту фракцию направляют на стадию деалкилирования, где и толуол, и ксилолы превращаются в бензол.

Применение

Бензол входит в десятку важнейших веществ химической промышленности. [ источник не указан 232 дня ] Большую часть получаемого бензола используют для синтеза других продуктов:

  • около 50 % бензола превращают в этилбензол (алкилирование бензола этиленом );

    около 25 % бензола превращают в кумол (алкилирование бензола пропиленом );

    приблизительно 10-15 % бензола гидрируют в циклогексан ;

    около 10 % бензола расходуется на производство нитробензола ;

    2-3 % бензола превращают в линейные алкилбензолы ;

    приблизительно 1 % бензола используется для синтеза хлорбензола .

В существенно меньших количествах бензол используется для синтеза некоторых других соединений. Изредка и в крайних случаях, ввиду высокой токсичности, бензол используется в качестве растворителя . Кроме того, бензол входит в состав бензина . Ввиду высокой токсичности его содержание новыми стандартами ограничено введением до 1 %.

Толуо́л (от исп. Tolu , толуанский бальзам) - метилбензол, бесцветная жидкость с характерным запахом, относится к аренам.

Толуол получен впервые П. Пельтье в 1835 при перегонке сосновой смолы. В 1838 выделен А. Девилем из бальзама, привезенного из города Толу в Колумбии, в честь которого получил свое название.

Общая характеристика

Бесцветная подвижная летучая жидкость с резким запахом, проявляет слабое наркотическое действие. Смешивается в неограниченных пределах с углеводородами, многими спиртами и эфирами , не смешивается с водой. Показатель преломления света 1,4969 при 20 °C. Горюч, сгорает коптящим пламенем.

Химические свойства

Для толуола характерны реакции электрофильного замещения в ароматическом кольце и замещения в метильной группе по радикальному механизму.

Электрофильное замещение в ароматическом кольце идёт преимущественно в орто- и пара-положения относительно метильной группы.

Кроме реакций замещения, толуол вступает в реакции присоединения (гидрирование), озонолиза. Некоторые окислители (щелочной раствор перманганата калия, разбавленная азотная кислота) окисляют метильную группу до карбоксильной. Температура самовоспламенения 535 °C. Концентрационный предел распространения пламени, %об . Температурный предел распространения пламени, °C . Температура вспышки 4 °C.

    Взаимодействие с перманганатом калия в кислой среде:

5С 6 H 5 СH 3 + 6KMnO 4 + 9H 2 SO 4 → 5С 6 H 5 СOOH + 6MnSO 4 + 3K 2 SO 4 + 14H 2 O образование бензойной кислоты

Получение и очистка

Продукт каталитического риформинга бензиновых фракций нефти . Выделяется селективной экстракцией и последующей ректификацией .Также хорошие выходы достигаются при каталитическом дегидрировании гептана через метилциклогексан . Очищают толуол аналогично бензолу , только в случае применения концентрированной серной кислоты нельзя забывать, что толуол сульфируется легче бензола, а, значит, необходимо поддерживать более низкую температуру реакционной смеси (менее 30 °C ). Толуол также образует с водой азеотропную смесь .

Толуол можно получить из бензола по реакции Фриделя-Крафтса :

Применение

Сырьё для производства бензола , бензойной кислоты , нитротолуолов (в том числе тринитротолуола ), толуилендиизоцианатов (через динитротолуол и толуилендиамин) бензилхлорида и др. органических веществ.

Является растворителем для многих полимеров , входит в состав различных товарных растворителей для лаков и красок . Входит в состав растворителей: Р-40, Р-4, 645, 646 , 647 , 648. Применяется как растворитель в химическом синтезе.

Нафтали́н - С 10 Н 8 твердое кристаллическое вещество с характерным запахом . В воде не растворяется, но хорошо - в бензоле , эфире , спирте , хлороформе .

Химические свойства

Нафталин по химическим свойствам сходен с бензолом : легко нитруется , сульфируется , взаимодействует с галогенами . Отличается от бензола тем, что ещё легче вступает в реакции.

Физические свойства

Плотность 1.14 г/см³, температура плавления 80.26 °C, температура кипения 218 °C, растворимость в воде примерно 30 мг/л, температура вспышки 79 - 87 °C, температура самовоспламенения 525 °C, молярная масса 128.17052 г/моль.

Получение

Получают нафталин из каменноугольной смолы . Также нафталин можно выделять из тяжёлой смолы пиролиза (закалочное масло), которая применяется в процессе пиролиза на этиленовых установках.

Также нафталин производят термиты Coptotermes formosanus , чтобы защитить свои гнёзда от муравьёв , грибков и нематод .

Применение

Важное сырьё химической промышленности: применяется для синтеза фталевого ангидрида , тетралина , декалина , разнообразных производных нафталина.

Производные нафталина применяют для получения красителей и взрывчатых веществ , в медицине , как инсектицид .

Содержит двойную связь и поэтому относится к ненасыщенным или непредельным углеводородам . Играет чрезвычайно важную роль в промышленности, а также является фитогормоном . Этилен - самое производимое органическое соединение в мире ; общее мировое производство этилена в 2008 году составило 113 миллионов тонн и продолжает расти на 2-3 % в год . Этилен обладает наркотическим действием. Класс опасности - четвёртый .

Получение

Этилен стали широко применять в качестве мономера перед Второй мировой войной в связи с необходимостью получения высококачественного изоляционного материала, способного заменить поливинилхлорид . После разработки метода полимеризации этилена под высоким давлением и изучения диэлектрических свойств получаемого полиэтилена началось его производство сначала в Великобритании, а позднее и в других странах.

Основным промышленным методом получения этилена является пиролиз жидких дистиллятов нефти или низших насыщенных углеводородов. Реакция проводится в трубчатых печах при +800-950 °С и давлении 0,3 МПа. При использовании в качестве сырья прямогонного бензина выход этилена составляет примерно 30 %. Одновременно с этиленом образуется также значительное количество жидких углеводородов, в том числе и ароматических. При пиролизе газойля выход этилена составляет примерно 15-25 %. Наибольший выход этилена - до 50 % - достигается при использовании в качестве сырья насыщенных углеводородов: этана, пропана и бутана. Их пиролиз проводят в присутствии водяного пара.

При выпуске с производства, при товарно-учётных операциях, при проверке его на соответствие нормативно-технической документации производится отбор проб этилена по процедуре, описанной в ГОСТ 24975.0-89 «Этилен и пропилен . Методы отбора проб». Отбор пробы этилена может производиться и в газообразном и в сжиженном виде в специальные пробоотборники по ГОСТ 14921.

Промышленно получаемый в России этилен должен соответствовать требованиям, изложенным в ГОСТ 25070-2013 «Этилен. Технические условия».

Структура производства

В настоящее время в структуре производства этилена 64 % приходится на крупнотоннажные установки пиролиза, ~17 % - на малотоннажные установки газового пиролиза, ~11 % составляет пиролиз бензина и 8 % падает на пиролиз этана .

Применение

Этилен является ведущим продуктом основного органического синтеза и применяется для получения следующих соединений (перечислены в алфавитном порядке):

  • Дихлорэтан / винилхлорид (3-е место, 12 % всего объёма);
  • Окись этилена (2-е место, 14-15 % всего объёма);
  • Полиэтилен (1-е место, до 60 % всего объёма);

Этилен в смеси с кислородом использовался в медицине для наркоза вплоть до середины 1980-х годов в СССР и на ближнем Востоке. Этилен является фитогормоном практически у всех растений , среди прочего отвечает за опадание иголок у хвойных.

Электронное и пространственное строение молекулы

Атомы углерода находятся во втором валентном состоянии (sp 2 -гибридизация). В результате, на плоскости под углом 120° образуются три гибридных облака, которые образуют три σ-связи с углеродом и двумя атомами водорода; p-электрон, который не участвовал в гибридизации, образует в перпендикулярной плоскости π-связь с р-электроном соседнего атома углерода. Так образуется двойная связь между атомами углерода. Молекула имеет плоскостное строение.

Основные химические свойства

Этилен - химически активное вещество. Так как в молекуле между атомами углерода имеется двойная связь, то одна из них, менее прочная, легко разрывается, и по месту разрыва связи происходит присоединение, окисление, полимеризация молекул.

  • Галогенирование:
C H 2 = C H 2 + B r 2 → C H 2 B r - C H 2 B r + D {\displaystyle {\mathsf {CH_{2}{\text{=}}CH_{2}+Br_{2}\rightarrow CH_{2}Br{\text{-}}CH_{2}Br+D}}} Происходит обесцвечивание бромной воды. Это качественная реакция на непредельные соединения.
  • Гидрирование:
C H 2 = C H 2 + H 2 → N i C H 3 - C H 3 {\displaystyle {\mathsf {CH_{2}{\text{=}}CH_{2}+H_{2}{\xrightarrow[{}]{Ni}}CH_{3}{\text{-}}CH_{3}}}}
  • Гидрогалогенирование:
C H 2 = C H 2 + H B r → C H 3 C H 2 B r {\displaystyle {\mathsf {CH_{2}{\text{=}}CH_{2}+HBr\rightarrow CH_{3}CH_{2}Br}}}
  • Гидратация:
C H 2 = C H 2 + H 2 O → H + C H 3 C H 2 O H {\displaystyle {\mathsf {CH_{2}{\text{=}}CH_{2}+H_{2}O{\xrightarrow[{}]{H^{+}}}CH_{3}CH_{2}OH}}} Эту реакцию открыл A.M. Бутлеров , и она используется для промышленного получения этилового спирта.
  • Окисление:
Этилен легко окисляется. Если этилен пропускать через раствор перманганата калия, то он обесцветится. Эта реакция используется для отличия предельных и непредельных соединений. В результате образуется этиленгликоль . Уравнение реакции : 3 C H 2 = C H 2 + 2 K M n O 4 + 4 H 2 O → C H 2 O H - C H 2 O H + 2 M n O 2 + 2 K O H {\displaystyle {\mathsf {3CH_{2}{\text{=}}CH_{2}+2KMnO_{4}+4H_{2}O\rightarrow CH_{2}OH{\text{-}}CH_{2}OH+2MnO_{2}+2KOH}}}
  • Горение:
C H 2 = C H 2 + 3 O 2 → 2 C O 2 + 2 H 2 O {\displaystyle {\mathsf {CH_{2}{\text{=}}CH_{2}+3O_{2}\rightarrow 2CO_{2}+2H_{2}O}}}
  • Полимеризация (получение полиэтилена):
n C H 2 = C H 2 → (- C H 2 - C H 2 -) n {\displaystyle {\mathsf {nCH_{2}{\text{=}}CH_{2}\rightarrow ({\text{-}}CH_{2}{\text{-}}CH_{2}{\text{-}})_{n}}}} 2 C H 2 = C H 2 → C H 2 = C H - C H 2 - C H 3 {\displaystyle {\mathsf {2CH_{2}{\text{=}}CH_{2}\rightarrow CH_{2}{\text{=}}CH{\text{-}}CH_{2}{\text{-}}CH_{3}}}}

Биологическая роль

К числу наиболее известных функций этилена относится развитие так называемого тройного ответа у этиолированных (выращенных в темноте) проростков при обработке этим гормоном. Тройной ответ включает в себя три реакции: укорочение и утолщение гипокотиля, укорочение корня и усиление апикального крючка (резкий изгиб верхней части гипокотиля). Ответ проростков на этилен крайне важен на первых этапах их развития, так как способствует пробивание ростков к свету .

В коммерческом сборе плодов и фруктов используют специальные комнаты или камеры для дозревания плодов , в атмосферу которых этилен впрыскивается из специальных каталитических генераторов, производящих газообразный этилен из жидкого этанола . Обычно для стимулирования дозревания плодов используется концентрация газообразного этилена в атмосфере камеры от 500 до 2000 ppm в течение 24-48 часов. При более высокой температуре воздуха и более высокой концентрации этилена в воздухе дозревание плодов идёт быстрее. Важно, однако, при этом обеспечивать контроль содержания углекислого газа в атмосфере камеры, поскольку высокотемпературное созревание (при температуре выше 20 градусов Цельсия) или созревание при высокой концентрации этилена в воздухе камеры приводит к резкому повышению выделения углекислого газа быстро созревающими плодами, порой до 10 % углекислоты в воздухе спустя 24 часа от начала дозревания, что может привести к углекислотному отравлению как работников, убирающих уже дозревшие плоды, так и самих фруктов .

Этилен использовался для стимулирования созревания плодов ещё в Древнем Египте. Древние египтяне намеренно царапали или слегка мяли, отбивали финики, фиги и другие плоды с целью стимулировать их созревание (повреждение тканей стимулирует образование этилена тканями растений). Древние китайцы сжигали деревянные ароматические палочки или ароматические свечи в закрытых помещениях с целью стимулировать созревание персиков (при сгорании свеч или дерева выделяется не только углекислый газ, но и недоокисленные промежуточные продукты горения, в том числе и этилен). В 1864 году было обнаружено, что утечка природного газа из уличных фонарей вызывает торможение роста близлежащих растений в длину, их скручивание, аномальное утолщение стеблей и корней и ускоренное созревание плодов. В 1901 году русский учёный Дмитрий Нелюбов показал, что активным компонентом природного газа, вызывающим эти изменения, является не основной его компонент, метан, а присутствующий в нём в малых количествах этилен . Позднее в 1917 году Сара Дубт доказала, что этилен стимулирует преждевременное опадание листьев . Однако только в 1934 году Гейн обнаружил, что сами растения синтезируют эндогенный этилен. . В 1935 году Крокер предположил, что этилен является растительным гормоном, ответственным за физиологическое регулирование созревания плодов, а также за старение вегетативных тканей растения, опадание листьев и торможение роста .

Цикл биосинтеза этилена начинается с превращения аминокислоты метионина в S-аденозил-метионин (SAMe) при помощи фермента метионин-аденозилтрансферазы. Затем S-аденозил-метионин превращается в 1-аминоциклопропан-1-карбоксиловую кислоту (АЦК, ACC ) при помощи фермента 1-аминоциклопропан-1-карбоксилат-синтетазы (АЦК-синтетазы). Активность АЦК-синтетазы лимитирует скорость всего цикла, поэтому регуляция активности этого фермента является ключевой в регуляции биосинтеза этилена у растений. Последняя стадия биосинтеза этилена требует наличия кислорода и происходит при действии фермента аминоциклопропанкарбоксилат-оксидазы (АЦК-оксидазы), ранее известной как этиленобразующий фермент. Биосинтез этилена у растений индуцируется как экзогенным, так и эндогенным этиленом (положительная обратная связь). Активность АЦК-синтетазы и, соответственно, образование этилена повышается также при высоких уровнях ауксинов , в особенности индолуксусной кислоты, и цитокининов .

Этиленовый сигнал у растений воспринимается минимум пятью различными семействами трансмембранных рецепторов, представляющих собой димеры белков. Известен, в частности, рецептор этилена ETR 1 у арабидопсиса (Arabidopsis ). Гены, кодирующие рецепторы для этилена, были клонированы у арабидопсиса и затем у томата . Этиленовые рецепторы кодируются множеством генов как в геноме арабидопсиса, так и в геноме томатов. Мутации в любом из семейства генов, которое состоит из пяти типов этиленовых рецепторов у арабидопсиса и минимум из шести типов рецепторов у томата, могут привести к нечувствительности растений к этилену и нарушениям процессов созревания, роста и увядания . Последовательности ДНК, характерные для генов этиленовых рецепторов, были обнаружены также у многих других видов растений. Более того, этиленсвязывающий белок был найден даже у цианобактерий .

Неблагоприятные внешние факторы, такие, как недостаточное содержание кислорода в атмосфере, наводнение, засуха, заморозки, механическое повреждение (ранение) растения, нападение патогенных микроорганизмов, грибков или насекомых, могут вызывать повышенное образование этилена в тканях растений. Так, например, при наводнении корни растения страдают от избытка воды и недостатка кислорода (гипоксии), что приводит к биосинтезу в них 1-аминоциклопропан-1-карбоксиловой кислоты. АЦК затем транспортируется по проводящим путям в стеблях вверх, до листьев, и в листьях окисляется до этилена. Образовавшийся этилен способствует эпинастическим движениям, приводящим к механическому стряхиванию воды с листьев, а также увяданию и опаданию листьев, лепестков цветков и плодов, что позволяет растению одновременно и избавиться от избытка воды в организме, и сократить потребность в кислороде за счёт сокращения общей массы тканей .

Небольшие количества эндогенного этилена также образуются в клетках животных, включая человека, в процессе перекисного окисления липидов. Некоторое количество эндогенного этилена затем окисляется до этиленоксида , который обладает способностью алкилировать ДНК и белки , в том числе гемоглобин (формируя специфический аддукт с N-терминальным валином гемоглобина - N-гидроксиэтил-валин) . Эндогенный этиленоксид также может алкилировать гуаниновые основания ДНК, что приводит к образованию аддукта 7-(2-гидроксиэтил)-гуанина, и является одной из причин присущего всем живым существам риска эндогенного канцерогенеза . Эндогенный этиленоксид также является мутагеном . С другой стороны, существует гипотеза, что если бы не образование в организме небольших количеств эндогенного этилена и соответственно этиленоксида, то скорость возникновения спонтанных мутаций и соответственно скорость эволюции была бы значительно ниже.

Примечания

  1. Devanney Michael T. Ethylene (англ.) (недоступная ссылка) . SRI Consulting (September 2009). Архивировано 18 июля 2010 года.
  2. Ethylene (англ.) (недоступная ссылка) . WP Report . SRI Consulting (January 2010). Архивировано 31 августа 2010 года.
  3. Газохроматографическое измерение массовых концентраций углеводородов: метана, этана, этилена, пропана, пропилена, бутана, альфа-бутилена, изопентана в воздухе рабочей зоны. Методические указания. МУК 4.1.1306-03 (Утв. главным государственным санитарным врачом РФ 30.03.2003)
  4. «Рост и развитие растений» В. В. Чуб (неопр.) (недоступная ссылка) . Дата обращения 21 января 2007. Архивировано 20 января 2007 года.
  5. «Delaying Christmas tree needle loss»
  6. Хомченко Г.П. §16.6. Этилен и его гомологи // Химия для поступающих в вузы. - 2-е изд. - М. : Высшая школа , 1993. - С. 345. - 447 с. - ISBN 5-06-002965-4 .
  7. В. Ш. Фельдблюм. Димеризация и диспропорционирование олефинов. М.: Химия, 1978
  8. Lin, Z.; Zhong, S.; Grierson, D. (2009). “Recent advances in ethylene research”. J. Exp. Bot . 60 (12): 3311-36. DOI :10.1093/jxb/erp204 . PMID .
  9. Ethylene and Fruit Ripening / J Plant Growth Regul (2007) 26:143-159 doi:10.1007/s00344-007-9002-y (англ.)

Непредельные углеводороды с двойной химической связью в молекулах относят к группе алкенов. Первым представителем гомологического ряда является этен, или этилен, формула которого: C 2 H 4 . Алкены часто называют олефинами. Название является историческим и возникло в 18-м веке, после получения продукта взаимодействия этилена с хлором - этилхлорида, имеющего вид маслянистой жидкости. Тогда этен и назвали маслородным газом. В нашей статье мы изучим его химические свойства, а также получение и применение в промышленности.

Взаимосвязь между строением молекулы и свойствами вещества

Согласно теории строения органических веществ, предложенной М. Бутлеровым, характеристика соединения полностью зависит структурной формулы и вида связей его молекулы. Химические свойства этилена также определяются пространственной конфигурацией атомов, гибридизацией электронных облаков и наличием в его молекуле пи-связи. Два негибридизованных p-электрона атомов углерода перекрываются в плоскости, перпендикулярной плоскости самой молекулы. Формируется двойная связь, разрыв которой обусловливает способность алкенов к реакциям присоединения и полимеризации.

Физические свойства

Этен - это газообразное вещество, с едва уловимым своеобразным запахом. Оно плохо растворимо в воде, но хорошо растворяется в бензоле, тетрахлорметане, бензине и других органических растворителях. Исходя из формулы этилена С 2 Н 4 , его молекулярная масса равна 28, то есть этен немного легче воздуха. В гомологическом ряду алкенов с увеличением их массы агрегатное состояние веществ изменяется по схеме: газ - жидкость - твердое соединение.

Получение газа в лаборатории и промышленности

Нагревая этиловый спирт до 140 °С в присутствии концентрированной серной кислоты, можно получить этилен в лабораторных условиях. Еще один способ - отщепление атомов водорода от молекул алканов. Действуя едким натрием или калием на галогензамещенные соединения предельных углеводородов, например на хлорэтан, добывают этилен. В промышленности наиболее перспективным способом его получения является переработка природного газа, а также пиролиз и крекинг нефти. Все химические свойства этилена - реакции гидратации, полимеризации, присоединения, окисления - объясняются наличием в его молекуле двойной связи.

Взаимодействие олефинов с элементами главной подгруппы седьмой группы

Все члены гомологического ряда этена присоединяют атомы галогенов по месту разрыва пи-связи в своей молекуле. Так, водный раствор брома красно-коричневого цвета обесцвечивается, в результате чего образуется уравнение этилена - дибромэтан:

C 2 H 4 + Br 2 = C 2 H 4 Br 2

Аналогично протекает реакция с хлором и йодом, в ней присоединение атомов галогенов также происходит по месту разрушения двойной связи. Все соединения - олефины могут взаимодействовать с галогеноводородами: хлороводородом, фтороводородом и т.д. В результате реакции присоединения, протекающей по ионному механизму, образуется вещества - галогенопроизводные предельных углеводородов: хлорэтан, фторэтан.

Промышленное производство этанола

Химические свойства этилена часто используют для получения важных веществ, широко применяемых в промышленности и быту. Например, нагревая этен с водой в присутствии ортофосфорной или серной кислот, под действием катализатора происходит процесс гидратации. Он идет с образованием этилового спирта - многотоннажного продукта, получаемого на химических предприятиях органического синтеза. Механизм реакции гидратации протекает по аналогии с другими реакциями присоединения. Кроме того, взаимодействие этилена с водой также происходит в результате разрыва пи-связи. К свободным валентностям атомов углерода этена присоединяются атомы водорода и гидроксогруппа, входящие в состав молекулы воды.

Гидрогенизация и горение этилена

Несмотря на все вышесказанное, реакция соединения водорода не имеет большого практического значения. Однако она показывает генетическую связь между различными классами органических соединений, в данном случае алканов и олефинов. Присоединяя водород, этен превращается в этан. Противоположный процесс - отщепление от предельных углеводородов атомов водорода приводит к образованию представителя алкенов - этена. Жесткое окисление олефинов, называемое горением, сопровождается выделением большого количества тепла, реакция является экзотермической. Продукты сгорания одинаковы для веществ всех классов углеводородов: алканов, непредельных соединений ряда этилена и ацетилена, ароматических веществ. К ним относятся углекислый газ и вода. Воздух в реакции с этиленом образует взрывчатую смесь.

Реакции окисления

Этен может окисляться раствором перманганата калия. Это одна из качественных реакций, с помощью которой доказывают наличие двойной связи в составе определяемого вещества. Фиолетовая окраска раствора исчезает вследствие разрыва двойной связи и образования двухатомного предельного спирта - этиленгликоля. Продукт реакции имеет широкий спектр применения в промышленности в качестве сырья для получения синтетических волокон, например лавсана, взрывчатых веществ и антифризов. Как видим, химические свойства этилена используются для получения ценных соединений и материалов.

Полимеризация олефинов

Повышение температуры, увеличение давления и применение катализаторов - это необходимые условия для проведения процесса полимеризации. Его механизм отличается от реакций присоединения или окисления. Он представляет собой последовательное связывание многих молекул этилена в местах разрыва двойных связей. Продуктом реакции является полиэтилен, физические характеристики которого зависят от величины n - степени полимеризации. Если она невелика, то вещество находится в жидком агрегатном состоянии. Если показатель приближается к 1000 звеньев, то из такого полимера изготовляют полиэтиленовую пленку, гибкие шланги. Если степень полимеризации превышает 1500 звеньев в цепи, то материал представляет собой твердое вещество белого цвета, жирное на ощупь.

Он идет на изготовление цельнолитых изделий и пластиковых труб. Галогенпроизводное соединение этилена - тефлон обладает антипригарными свойствами и является широко применяемым полимером, востребованным при изготовлении мультиварок, сковород, жаровен. Его высокая способность противостоять истиранию используется в производстве смазок к автомобильным двигателям, а низкая токсичность и толерантность к тканям человеческого организма позволили применять тефлоновые протезы в хирургии.

В нашей статье мы рассмотрели такие химические свойства олефинов, как горение этилена, реакции присоединения, окисления и полимеризации.


Самое обсуждаемое
Каким образом обозначить орфограммы Каким образом обозначить орфограммы
В чем заключается особая роль науки в современном обществе? В чем заключается особая роль науки в современном обществе?
Жизнь вельможи в древнем Египте Жизнь вельможи в древнем Египте


top