Определение производной функции, ее геометрический и физический смысл. Определение производной, её геометрический смысл 1 производная геометрический смысл производной

Определение производной функции, ее геометрический и физический смысл. Определение производной, её геометрический смысл 1 производная геометрический смысл производной

Для выяснения геометрического значения производной рассмотрим график функции y = f(x). Возьмем произвольную точку М с координатами (x, y) и близкую к ней точку N (x + $\Delta $x, y + $\Delta $y). Проведем ординаты $\overline{M_{1} M}$ и $\overline{N_{1} N}$, а из точки М -- параллельную оси ОХ прямую.

Отношение $\frac{\Delta y}{\Delta x} $ является тангенсом угла $\alpha $1, образованного секущей MN с положительным направлением оси ОХ. При стремлении $\Delta $х к нулю точка N будет приближаться к M, а предельным положением секущей MN станет касательная MT к кривой в точке M. Таким образом, производная f`(x) равна тангенсу угла $\alpha $, образованного касательной к кривой в точке M (х, y) с положительным направлением к оси ОХ -- угловому коэффициенту касательной (рис.1).

Рисунок 1. График функции

Вычисляя значения по формулам (1), важно не ошибиться в знаках, т.к. приращение может быть и отрицательным.

Точка N, лежащая на кривой, может стремиться к M с любой стороны. Так, если на рисунке 1, касательной придать противоположное направление, угол $\alpha $ изменится на величину $\pi $, что существенно повлияет на тангенс угла и соответственно угловой коэффициент.

Вывод

Следует вывод, что существование производной связано с существованием касательной к кривой y = f(x), а угловой коэффициент -- tg $\alpha $ = f`(x) конечный. Поэтому касательная не должна быть параллельной оси OY, иначе $\alpha $ = $\pi $/2, а тангенс угла будет бесконечным.

В некоторых точках непрерывная кривая может не иметь касательной или иметь касательную параллельную оси OY (рис.2). Тогда в этих значениях функция не может иметь производную. Подобных точек может быть сколько угодно много на кривой функции.

Рисунок 2. Исключительные точки кривой

Рассмотрим рисунок 2. Пусть $\Delta $x стремится к нулю со стороны отрицательных или положительных значений:

\[\Delta x\to -0\begin{array}{cc} {} & {\Delta x\to +0} \end{array}\]

Если в данном случае отношения (1) имеют конечный придел, он обозначается как:

В первом случае -- производная слева, во втором -- производная справа.

Существование предела говорит о равносильности и равенстве левой и правой производной:

Если же левая и правая производные неравны, то в данной точке существуют касательные не параллельные OY (точка М1, рис.2). В точках М2, М3 отношения (1) стремятся к бесконечности.

Для точек N лежащих слева от M2, $\Delta $x $

Справа от $M_2$, $\Delta $x $>$ 0, но выражение также f(x + $\Delta $x) -- f(x) $

Для точки $M_3$ слева $\Delta $x $$ 0 и f(x + $\Delta $x) -- f(x) $>$ 0, т.е. выражения (1) и слева, и справа положительны и стремятся к +$\infty $ как при приближении $\Delta $x к -0, так и к +0.

Случай отсутствия производной в конкретных точках прямой (x = c) представлен на рисунке 3.

Рисунок 3. Отсутствие производных

Пример 1

На рисунке 4 изображен график функции и касательной к графику в точке с абсциссой $x_0$. Найти значение производной функции в абсциссе.

Решение. Производная в точке равна отношению~приращения функции к приращению аргумента. Выберем на касательной две точки с целочисленными координатами. Пусть, например, это будут точки F (-3,2) и C (-2.4).

Производная функции.

1. Определение производной, её геометрический смысл.

2.Производная сложной функции.

3. Производная обратной функции.

4. Производные высших порядков.

5. Параметрически заданные функции и неявно.

6. Дифференцирование функций, заданных параметрически и неявно.

Введение.

Источником дифференциального исчисления были два вопроса, выдвинутые запросами науки и техники в 17 веке.

1) Вопрос о вычислении скорости при произвольно заданном законе движения.

2) Вопрос о нахождении (с помощью вычислений) касательной к кривой произвольно заданной.

Задачу проведения касательной к некоторым кривым решил ещё древнегреческий учёный Архимед (287-212 г.г. до н.э.), пользуясь методом вычерчивания.

Но только в 17 и 18 веках в связи с прогрессом естествознания и техники эти вопросы получили должное развитие.

Одним из важных вопросов при изучении любого физического явления обычно является вопрос о скорости, быстроте происходящего явления.

Скорость с которой движется самолёт или автомобиль, всегда служит важнейшим показателем его работы. Быстрота прироста населения того или иного государства является одной из основных характеристик его общественного развития.

Первоначальная идея скорости ясна каждому. Однако для решения большинства практических задач этой общей идеи недостаточно. Необходимо иметь такое количественное определение этой величины, которую мы называем скоростью. Потребность в таком точном количественном определении исторически послужила одним из основных побудителей к созданию математического анализаю. Целый раздел математического анализа посвящен решению этой основной задачи и выводам из этого решения. К изучению этого раздела мы и переходим.

Определение производной, её геометрический смысл.

Пусть дана функция определённая в некотором интервале (а,в) и непрерывная в нём.

1. Дадим аргументу х приращение , тогда функция получит

приращение :

2. Составим отношение .

3. Переходя к пределу в при и, предполагая, что предел

существует, получим величину , которую называют

производной функции по аргументу х .

Определение. Производной функции в точке называется предел отношения приращения функции к приращению аргумента , когда →0.

Значение производной очевидно зависит от точки х , в которой оно найдено, поэтому производная функции есть в свою очередь некоторая функция от х . Обозначается .

По определению имеем

или (3)

Пример. Найти производную функции .

1. ;

Рассмотрим произвольную прямую, проходящую через точку гра­фика функции - точку А(x 0 , f (х 0)) и пересекающую график в некоторой точке B (x ; f (x )). Такая прямая (АВ) называется секущей. Из ∆АВС: АС = ∆ x ; ВС =∆у; tgβ =∆ y /∆ x .

Так как АС || Ox , то Ð ALO = Ð BAC = β (как соответственные при параллельных). Но Ð ALO - это угол наклона секущей АВ к положи­тельному направлению оси Ох. Значит, tgβ = k - угловой коэффициент прямой АВ.

Теперь будем уменьшать ∆х, т.е. ∆х→ 0. При этом точка В будет прибли­жаться к точке А по графику, а секущая АВ будет поворачиваться. Пре­дельным положением секущей АВ при ∆х→ 0 будет прямая (a ), называемая касательной к графику функции у = f (х) в точке А.

Если перейти к пределу при ∆х → 0 в равенстве tg β =∆ y /∆ x , то получим

или tg a = f "(x 0 ), так как
a -угол накло­на касательной к положительному направлению оси Ох

, по определению производной. Но tg a = k - угловой коэффициент каса­тельной, значит, k = tg a = f "(x 0 ).

Итак, геометрический смысл производной заключается в следую­щем:

Производная функции в точке x 0 равна угловому коэффициенту ка­сательной к графику функции, проведенной в точке с абсциссой x 0 .

Физический смысл производной.

Рассмотрим движение точки по прямой. Пусть задана координата точки в любой момент времени x (t ). Известно (из курса физики), что средняя скорость за промежуток времени [ t 0 ; t 0 + ∆ t ] равна отношению расстояния, пройденного за этот промежуток времени, на время, т.е.

V ср = ∆ x /∆ t . Перейдем к пределу в последнем равенстве при ∆ t → 0.

lim V ср (t ) = n (t 0 ) - мгновенная скорость в момент времени t 0 , ∆ t → 0.

а lim = ∆ x /∆ t = x "(t 0 ) (по определению производной).

Итак, n (t ) = x "(t ).

Физический смысл производной заключается в следующем: произ­водная функции y = f ( x ) в точке x 0 - это скорость изменения функции f (х) в точке x 0

Производная применяется в физике для нахождения скорости по известной функции координаты от времени, ускорения по известной функции скорости от времени.

u (t ) = x "(t ) - скорость,

a (f ) = n "(t ) - ускорение, или

a (t ) = x "(t ).

Если известен закон движения материальной точки по окружности, то можно найти угловую скорость и угловое ускорение при вращатель­ном движении:

φ = φ (t ) - изменение угла от времени,

ω = φ "(t ) - угловая скорость,

ε = φ "(t ) - угловое ускорение, или ε = φ "(t ).

Если известен закон распределения массы неоднородного стержня, то можно найти линейную плотность неоднородного стержня:

m = m (х) - масса,

x Î , l - длина стержня,

р = m "(х) - линейная плотность.

С помощью производной решаются задачи из теории упругости и гармонических колебаний. Так, по закону Гука

F = - kx , x – переменная координата, k - коэффициент упругости пружины. Положив ω 2 = k / m , получим дифференциальное уравнение пружинного маятника х"(t ) + ω 2 x(t ) = 0,

где ω = √ k /√ m частота колебаний (l / c ), k - жесткость пружины (H / m ).

Уравнение вида у" + ω 2 y = 0 называется уравнением гармонических колебаний (механических, электрических, электромагнитных). Решени­ем таких уравнений является функция

у = Asin (ωt + φ 0 ) или у = Acos (ωt + φ 0 ), где

А - амплитуда колебаний, ω - циклическая частота,

φ 0 - начальная фаза.

Произво́дная (функции в точке) - основное понятие дифференциального исчисления , характеризующее скорость изменения функции (в данной точке). Определяется как предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю , если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке).

Процесс вычисления производной называется дифференци́рованием . Обратный процесс - нахождение первообразной - интегрирование .

Если функция задана графиком, её производная в каждой точке равна тангенсу угла наклона касательной к графику функции. А если функция задана формулой - вам помогут таблица производных и правила дифференцирования, то есть правила нахождения производной.

4.Производная сложной и обратной функции.

Пусть теперь задана сложная функция , т.е. переменная есть функция переменной , а переменная есть, в свою очередь, функция от независимой переменной .

Теорема . Если и дифференцируемые функции своих аргументов, то сложная функция является дифференцируемой функцией и ее производная равна произведению производной данной функции по промежуточному аргументу и производной промежуточного аргумента по независимой переменной:

.

Утверждение легко получается из очевидного равенства (справедливого при и ) предельным переходом при (что в силу непрерывности дифференцируемой функции влечет ).

Перейдем к рассмотрению производной обратной функции .

Пусть на множестве дифференцируемая функция имеет множество значений и на множестве существует обратная функция .

Теорема . Если в точке производная , то производная обратной функции в точке существует и равна обратной величине производной данной функции : , или

Эта формула легко получается из геометрических соображений.

Так как есть тангенс угла наклона касательной линии к оси , то есть тангенс угла наклона той же касательной (той же линии ) в той же точке к оси .

Если и острые, то , а если тупые, то .

В обоих случаях . Этому равенству и равносильно равенство

5.Геометрический и физический смысл производной.

1) Физический смысл производной.

Если функция y = f(x) и ее аргумент x являются физическими величинами, то производная– скорость изменения переменной y относительно переменной x в точке. Например, если S = S(t) – расстояние, проходимое точкой за время t, то ее производная– скорость в момент времени. Если q = q(t) – количество электричества, протекающее через поперечное сечение проводника в момент времени t, то– скорость изменения количества электричества в момент времени, т.е. сила тока в момент времени.

2) Геометрический смысл производной.

Пусть – некоторая кривая,– точка на кривой.

Любая прямая, пересекающая не менее чем в двух точках называется секущей.

Касательной к кривой в точкеназывается предельное положение секущей, если точкастремится к, двигаясь по кривой.

Из определения очевидно, что если касательная к кривой в точке существует, то она единственная

Рассмотрим кривую y = f(x) (т.е. график функции y = f(x)). Пусть в точке он имеет невертикальную касательную. Ее уравнение:(уравнение прямой, проходящей через точкуи имеющую угловой коэффициент k).

По определению углового коэффициента , где– угол наклона прямойк оси.

Пусть– угол наклона секущейк оси, где. Так как– касательная, то при

Следовательно,

Таким образом, получили, что– угловой коэффициент касательной к графику функции y = f(x) в точке(геометрический смысл производной функции в точке). Поэтому уравнение касательной к кривой y = f(x) в точкеможно записать в виде

Конспект открытого урока преподавателя ГБПОУ «Педагогического колледжа № 4 Санкт-Петербурга»

Мартусевич Татьяны Олеговны

Дата: 29.12.2014.

Тема: Геометрический смысл производной.

Тип урока: изучение нового материала.

Методы обучения: наглядный, частично поисковый.

Цель урока.

Ввести понятие касательной к графику функции в точке, выяснить в чем состоит геометрический смысл производной, вывести уравнение касательной и научить находить его.

Образовательные задачи:

    Добиться понимания геометрического смысла производной; вывода уравнения касательной; научиться решать базовые задачи;

    обеспечить повторение материала по теме «Определение производной»;

    создать условия контроля (самоконтроля) знаний и умений.

Развивающие задачи:

    способствовать формированию умений применять приемы сравнения, обобщения, выделения главного;

    продолжить развитие математического кругозора, мышления и речи, внимания и памяти.

Воспитательные задачи:

    содействовать воспитанию интереса к математике;

    воспитание активности, мобильности, умения общаться.

Тип урока – комбинированный урок с использованием ИКТ.

Оборудование – мультимедийная установка, презентация Microsoft Power Point .

Этап урока

Время

Деятельность преподавателя

Деятельность учащегося

1. Организационный момент.

Сообщение темы и цели урока.

Тема: Геометрический смысл производной.

Цель урока.

Ввести понятие касательной к графику функции в точке, выяснить в чем состоит геометрический смысл производной, вывести уравнение касательной и научить находить его.

Подготовка студентов к работе на занятии.

Подготовка к работе на занятии.

Осознание темы и цели урока.

Конспектирование.

2. Подготовка к изучению нового материала через повторение и актуализацию опорных знаний.

Организация повторения и актуализации опорных знаний: определения производной и формулирование её физического смысла.

Формулирование определения производной и формулирование её физического смысла. Повторение, актуализация и закрепление опорных знаний.

Организация повторения и формирование навыка нахождения производной степенной функции и элемениарных функций.

Нахождение производной данных функций по формулам.


Повторение свойств линейной функции.

Повторение, восприятие чертежей и высказываний преподавателя

3. Работа с новым материалом: объяснение.

Объяснение смысла отношения приращения функции к приращению аргумента

Объяснение геометрического смысла производной.

Введение нового материала посредством словесных объяснений с привлечением образов и наглядных средств: мультимедийной презентации с анимацией.

Восприятие объяснения, понимание, ответы на вопросы учителя.

Формулирование вопроса преподавателю в случае затруднения.

Восприятие новой информации, её первичное понимание и осмысление.

Формулирование вопросов преподавателю в случае затруднения.

Создание конспекта.

Формулирование геометрического смысла производной.

Рассмотрение трех случаев.

Конспектирование, выполнение рисунков.

4. Работа с новым материалом.

Первичное осмысление и применение изученного материала, его закрепление.

В каких точках производная положительна?

Отрицательна?

Равна нулю?

Обучение поиску алгоритма ответов на поставленные вопросы по графику.

Понимание и осмысление и применение новой информации для решения задачи.

5. Первичное осмысление и применение изученного материала, его закрепление.

Сообщение условия задачи.

Запись условия задачи.

Формулирование вопроса преподавателю в случае затруднения

6. Применение знаний: самостоятельная работа обучающего характера.

Решите задачу самостоятельно:

Применение полученных знаний.

Самостоятельная работа по решению задачи на нахождение производной по рисунку. Обсуждение и сверка ответов в паре, формулирование вопроса преподавателю в случае затруднения.

7. Работа с новым материалом: объяснение.

Вывод уравнения касательной к графику функции в точке.


Подробное объяснение вывода уравнения касательной к графику функции в точке с привлечением в качестве наглядности в виде мультимедийной презентации, ответы на вопросы учащихся.

Вывод уравнения касательной совместно с преподавателем. Ответы на вопросы преподавателя.

Конспектирование, создание рисунка.

8. Работа с новым материалом: объяснение.

В диалоге со студентами вывод алгоритма нахождения уравнения касательной к графику данной функции в данной точке.

В диалоге с преподавателем вывод алгоритма нахождения уравнения касательной к графику данной функции в данной точке.

Конспектирование.

Сообщение условия задачи.

Обучение применению полученных знаний.

Организация поиска путей решения задачи и их реализация. подробный разбор решения с объяснением.

Запись условия задачи.

Выдвижение предположений о возможных путях решения задачи при реализации каждого пункта плана действий. Решение задачи совместно с преподавателем.

Запись решения задачи и ответа.

9. Применение знаний: самостоятельная работа обучающего характера.

Индивидуальный контроль. Консультирование и помощь студентам по мере необходимости.

Проверка и объяснение решения с использованием презентации.

Применение полученных знаний.

Самостоятельная работа по решению задачи на нахождение производной по рисунку. Обсуждение и сверка ответов в паре, формулирование вопроса преподавателю в случае затруднения

10. Домашнее задание.

§48, задачи 1 и 3, разобраться в решении и записать его в тетрадь, с рисунками.

№ 860 (2,4,6,8),

Сообщение домашнего задания с комментариями.

Запись домашнего задания.

11. Подведение итогов.

Повторили определение производной; физический смысл производной; свойства линейной функции.

Узнали, в чём заключается геометрический смысл производной.

Научились выводить уравнение касательной к графику данной функции в данной точке.

Корректировка и уточнение итогов урока.

Перечисление итогов урока.

12. Рефлексия.

1. Вам было на уроке: а) легко; б) обычно; в) трудно.

а) усвоил(а) полностью, могу применить;

б) усвоил(а), но затрудняюсь в применении;

в) не усвоил(а).

3. Мультимедийная презентация на уроке:

а) помогала усвоению материала; б) не помогала усвоению материала;

в) мешала усвоению материала.

Проведение рефлексии.


Самое обсуждаемое
Мертвые души Мертвые души 8 9 глава краткое содержание Мертвые души Мертвые души 8 9 глава краткое содержание
Потому что или потому, что (запятая при сложных подчинительных союзах) Потому что или потому, что (запятая при сложных подчинительных союзах)
Где в России добывают янтарь: залежи янтаря в России, типы месторождений, места, способы и методы добычи камней Где в России добывают янтарь: залежи янтаря в России, типы месторождений, места, способы и методы добычи камней


top