Общие положения математического моделирования. Моделирование как метод научного познания.

Тренажер "Простое сравнение". В игровой форме помогает улучшить навыки памяти, внимания. Совершенно бесплатно, уделяя всего 20 минут в день - Вы получите положительный эффект через 2 недели.

Пройти тест

Растущий интерес философии и методологии познания к теме моделирования был вызван тем значением, которое метод моделирования получил в современной науке, и в особенности в физике, химии, биологии, кибернетике, не говоря уже о многих технических науках.

Однако моделирование как специфическое средство и форма научного познания не является изобретением XIX или XX века. Достаточно указать на представления Демокрита и Эпикура об атомах, их форме, и способах соединения, об атомных вихрях и ливнях, объяснения физических свойств различных веществ с помощью представления о круглых и гладких или крючковатых частицах, сцепленных между собой. Эти представления являются прообразами современных моделей, отражающих ядерно-электронное строение атома вещества.

В настоящее время нельзя назвать область человеческой деятельности, в которой в той или иной степени не использовались бы методы моделирования. Остановимся на философских аспектах моделирования, а точнее общей теории моделирования.

Методологическая основа моделирования заключается в следующем. Все то, на что направлена человеческая деятельность, называется объектом (лат. objectum – предмет). Выработка методологии направлена на упорядочение получения и обработки информации об объектах, которые существуют вне нашего сознания и взаимодействуют между собой и внешней средой.

В научных исследованиях большую роль играют гипотезы, то есть определенные предсказания, основывающиеся на небольшом количестве опытных данных, наблюдений, догадок. Быстрая и полная проверка гипотез может быть проведена в ходе специально поставленного эксперимента. При формулировании и проверки правильности гипотез большое значение в качестве метода суждений имеет аналогия.

Аналогией называют суждение о каком либо частном сходстве двух объектов, причем такое сходство может быть существенным и несущественным. Необходимо отметить, что понятия существенности и несущественности сходства или различия объектов условны и относительны. Существенность сходства (различия) зависит от уровня абстрагирования и в общем случае определяется конечной целью проводимого исследования. Современная научная гипотеза создается, как правило, по аналогии с проверенными на практике научными положениями. Таким образом, аналогия связывает гипотезу с экспериментом.

Гипотезы и аналогии, отражающие реальный, объективно существующий мир, должны обладать наглядностью или сводится к удобным для исследования логическим схемам. Такие логические схемы, упрощающие рассуждения и логические построения или позволяющие проводить эксперименты, уточняющие природу явлений, называются моделями. Другими словами модель (лат. modulus - мера) – это объект заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.

Моделированием называется замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала с помощью объекта-модели. Таким образом, моделирование может быть определено как представление объекта моделью для получения информации об этом объекте путем проведения экспериментов с его моделью. И.Т. Фролов отмечал, что «моделирование означает материальное или мысленное имитирование реально существующей системы путем специального конструирования аналогов (моделей), в которых воспроизводятся принципы организации и функционирования этой системы». Здесь в основе мысль, что модель средство познания, главный ее признак - отображение. Теория замещения одних объектов (оригиналов) другими объектами (моделями) и исследование свойств объектов на их моделях называется теорией моделирования.

Определяя гносеологическую роль теории моделирования, то есть ее значение в процессе познания, необходимо, прежде всего, отвлечься от имеющегося в науке и технике многообразия моделей и выделить то общее, что присуще моделям различных по своей природе объектов реального мира. Это общее заключатся в наличии некоторой структуры (статической или динамической, материальной или мысленной), которая подобна структуре данного объекта. В процессе изучения модель выступает в роли относительно самостоятельного квазиобъекта, позволяющего получить при исследовании некоторые знания о самом объекте.

Если результаты моделирования подтверждаются и могут служить основой для прогнозирования процессов, протекающих в исследуемых объектах, то говорят, что модель адекватна объекту. При этом адекватность модели зависит от цели моделирования и принятых критериев.

Обобщенно моделирование можно определить как метод опосредованного познания, при котором изучаемый объект-оригинал находится в неком соответствии с другим объектом-моделью, причем модель способна в том или ином отношении замещать оригинал на некоторых стадиях познавательного процесса. Стадии познания, на которых происходит такая замена, а также формы соответствия модели и оригинала могут быть различными:

Моделирование как познавательный процесс, содержащий переработку информации, поступающей из внешней среды, о происходящих в ней явлениях, в результате чего в сознании появляются образы, соответствующие объектам.

Моделирование, заключающееся в построении некоторой системы-модели (второй системы), связанной определенными отношениями подобия с системой-оригиналом (первой системой), причем в этом случае отображение одной системы в другую является средством выявления зависимостей между двумя системами, отраженными в соотношениях подобия, а не результатом непосредственного изучения поступающей информации.

Следует отметить, что с точки зрения философии моделирование – эффективное средство познания природы. Процесс моделирования предполагает наличие:

объекта исследования;

исследователя, перед которым поставлена конкретная задача;

модели, создаваемой для получения информации об объекте и необходимой для решения поставленной задачи.

По отношению модели исследователь является, по сути дела, экспериментатором, только в данном случае эксперимент проводится не с реальным объектом, а с его моделью. Надо иметь в виду, что любой эксперимент может иметь существенное значение в конкретной области науки только при специальной его обработке и обобщении. Единичный эксперимент никогда не может быть решающим для подтверждения гипотезы, проверки теории. Следует помнить о том, что критерием истины являются опыт, практика, экспериментальное исследование.

Вычислительный эксперимент, его определение и основные этапы.

Академик А. А. Самарский, один из основоположников вычислительной математики и математического моделирования в нашей стране, создатель ведущей школы в области математического моделирования, понимал под вычислительным экспериментом такую организацию исследований, при которой на основе математических моделей изучаются свойства объектов и явлений, проигрывается их поведение в различных условиях и на основе этого выбирается оптимальный режим. Другими словами, вычислительный эксперимент предполагает переход от изучения реального объекта к изучению его математической модели. Такой моделью, как правило, является одно или несколько уравнений. Более строго математические модели будут определены ниже.

Впервые вычислительный эксперимент начал использоваться для изучения таких процессов, экспериментальное исследование которых невозможно или затруднено. Например, в 40-50 годы XX столетия академик М.В. Келдыш разрабатывает математическое описание космических полетов.

К основным преимуществам вычислительного эксперимента можно отнести следующие:

Возможность исследования объекта без модификации установки или аппарата.

Возможность исследования каждого фактора в отдельности, в то время как в реальности они действуют одновременно.

Возможность исследования нереализуемых на практике процессов.

Вычислительный эксперимент включает в себя следующие этапы (см. рисунок 1):

Физическое описание процесса, то есть уяснение закономерности протекаемых явлений.

Разработка математической модели.

Алгоритм или метод решения уравнений.

Разработка программ.

Проведение расчетов, анализ результатов и оптимизация.

Тем самым основу вычислительного эксперимента составляет триада: модель – алгоритм - программа. Опыт решения крупных задач показывает, что метод математического моделирования и вычислительный эксперимент соединяют в себе преимущества традиционных теоретических и экспериментальных методов исследования.

Стоит заметить, что на практике результаты первых расчетов, как правило, весьма далеки от реальных. Поэтому происходит постоянное усовершенствование алгоритма, уточнение математической модели до совпадения с какими-то тестовыми или контрольными данными. Этот этап, называемый идентификацией математической модели, всегда присутствует в вычислительном эксперименте. Поэтому нельзя говорить об одной модели любого явления. Всегда существует иерархия математических моделей, начиная от простых и кончая более сложными. Следует выбирать некоторый уровень сложности модели, соответствующей данной конкретной задаче.