Оптимизационные модели

Тренажер "Простое сравнение". В игровой форме помогает улучшить навыки памяти, внимания. Совершенно бесплатно, уделяя всего 20 минут в день - Вы получите положительный эффект через 2 недели.

Пройти тест

Их так же разбивают на стационарные и динамические. Стационарные модели используются на уровне проектирования различных технологических систем. Динамические – как на уровне проектирования, так и, главным образом, для оптимального управления различными процессами – технологическими, экономическими и др.

В задачах оптимизации имеется два направления. К первому относятся детерминированные задачи. Вся входная информация в них является полностью определяемой.

Второе направление относится к стохастическим процессам. В этих задачах некоторые параметры носят случайный характер или содержат элемент неопределенности. Многие задачи оптимизации автоматических устройств, например, содержат параметры в виде случайных помех с некоторыми вероятностными характеристиками.

Методы отыскания экстремума функции многих переменных с различными ограничениями часто называются методами математического программирования. Задачи математического программирования – одни из важных оптимизационных задач.

В математическом программировании выделяются следующие основные разделы:

Линейное программирование. Целевая функция линейна, а множество, на котором ищется экстремум целевой функции, задается системой линейных равенств и неравенств.

Нелинейное программирование. Целевая функция нелинейная и нелинейные ограничения.

Выпуклое программирование. Целевая функция выпуклая и выпуклое множество, на котором решается экстремальная задача.

Квадратичное программирование. Целевая функция квадратичная, а ограничения – линейные равенства и неравенства.

Многоэкстремальные задачи. Задачи, в которых целевая функция имеет несколько локальных экстремумов. Такие задачи представляются весьма проблемными.

Целочисленное программирование. В подобных задачах на переменные накладываются условия целочисленности.

Как правило, к задачам математического программирования неприменимы методы классического анализа для отыскания экстремума функции нескольких переменных.

Модели теории оптимального управления – одни из важных в оптимизационных моделях. Математическая теория оптимального управления относится к одной из теорий, имеющих важные практические применения, в основном, для оптимального управления процессами.

Различают три вида математических моделей теории оптимального управления. К первому виду относятся дискретные модели оптимального управления. Традиционно такие модели называют моделями динамического программирования. Широко известен метод динамического программирования Беллмана. Ко второму типу относятся модели, описываемые задачам Коши для систем обыкновенных дифференциальных уравнений. Их часто называют моделями оптимального управления системами с сосредоточенными параметрами. Третий вид моделей описывается краевыми задачами, как для обыкновенных дифференциальных уравнений, так и для уравнений в частных производных. Такие модели называют моделями оптимального управления системами с распределенными параметрами.