Сумма арифметической последовательности. Сумма арифметической прогрессии. Группировка и сумма элементов

Сумма арифметической последовательности. Сумма арифметической прогрессии. Группировка и сумма элементов

Понятие числовой последовательности подразумевает соответствие каждому натуральному числу некоторого действительного значения. Такой ряд чисел может быть как произвольным, так и обладать определенными свойствами – прогрессия. В последнем случае каждый последующий элемент (член) последовательности можно вычислить с помощью предыдущего.

Арифметическая прогрессия – последовательность числовых значений, в которой ее соседние члены разнятся между собой на одинаковое число (подобным свойством обладают все элементы ряда, начиная со 2-ого). Данное число – разница между предыдущим и последующим членом – постоянно и называется разностью прогрессии.

Разность прогрессии: определение

Рассмотрим последовательность, состоящую из j значений A = a(1), a(2), a(3), a(4) … a(j), j принадлежит множеству натуральных чисел N. Арифметическая прогрессия, согласно своего определения, – последовательность, в которой a(3) – a(2) = a(4) – a(3) = a(5) – a(4) = … = a(j) – a(j-1) = d. Величина d – искомая разность данной прогрессии.

d = a(j) – a(j-1).

Выделяют:

  • Возрастающую прогрессию, в таком случае d > 0. Пример: 4, 8, 12, 16, 20, …
  • Убывающую прогрессию, тогда d < 0. Пример: 18, 13, 8, 3, -2, …

Разность прогрессии и ее произвольные элементы

Если известны 2 произвольных члена прогрессии (i-ый, k-ый), то установить разность для данной последовательности можно на базе соотношения:

a(i) = a(k) + (i – k)*d, значит d = (a(i) – a(k))/(i-k).

Разность прогрессии и ее первый член

Данное выражение поможет определить неизвестную величину лишь в случаях, когда известен номер элемента последовательности.

Разность прогрессии и ее сумма

Сумма прогрессии – это сумма ее членов. Для вычисления суммарного значения ее первых j элементов воспользуйтесь соответствующей формулой:

S(j) =((a(1) + a(j))/2)*j, но т.к. a(j) = a(1) + d(j – 1), то S(j) = ((a(1) + a(1) + d(j – 1))/2)*j=((2a(1) + d(– 1))/2)*j.

Многие слышали об арифметической прогрессии, но не все хорошо представляют, что это такое. В данной статье дадим соответствующее определение, а также рассмотрим вопрос, как найти разность прогрессии арифметической, и приведем ряд примеров.

Математическое определение

Итак, если речь идет о прогрессии арифметической или алгебраической (эти понятия определяют одно и то же), то это означает, что имеется некоторый числовой ряд, удовлетворяющий следующему закону: каждые два соседних числа в ряду отличаются на одно и то же значение. Математически это записывается так:

Здесь n означает номер элемента a n в последовательности, а число d - это разность прогрессии (ее название следует из представленной формулы).

О чем говорит знание разности d? О том, как "далеко" друг от друга отстоят соседние числа. Однако знание d является необходимым, но не достаточным условием для определения (восстановления) всей прогрессии. Необходимо знать еще одно число, которым может быть совершенно любой элемент рассматриваемого ряда, например, a 4 , a10, но, как правило, используют первое число, то есть a 1 .

Формулы для определения элементов прогрессии

В общем, информации выше уже достаточно, чтобы переходить к решению конкретных задач. Тем не менее до того, как будет дана прогрессия арифметическая, и найти разность ее будет необходимо, приведем пару полезных формул, облегчив тем самым последующий процесс решения задач.

Несложно показать, что любой элемент последовательности с номером n может быть найден следующим образом:

a n = a 1 + (n - 1) * d

Действительно, проверить эту формулу может каждый простым перебором: если подставить n = 1, то получится первый элемент, если подставить n = 2, тогда выражение выдает сумму первого числа и разности, и так далее.

Условия многих задач составляются таким образом, что по известной паре чисел, номера которых в последовательности также даны, необходимо восстановить весь числовой ряд (найти разность и первый элемент). Сейчас мы решим эту задачу в общем виде.

Итак, пусть даны два элемента с номерами n и m. Пользуясь полученной выше формулой, можно составить систему из двух уравнений:

a n = a 1 + (n - 1) * d;

a m = a 1 + (m - 1) * d

Для нахождения неизвестных величин воспользуемся известным простым приемом решения такой системы: вычтем попарно левую и правую части, равенство при этом останется справедливым. Имеем:

a n = a 1 + (n - 1) * d;

a n - a m = (n - 1) * d - (m - 1) * d = d * (n - m)

Таким образом, мы исключили одну неизвестную (a 1). Теперь можно записать окончательное выражение для определения d:

d = (a n - a m) / (n - m), где n > m

Мы получили очень простую формулу: чтобы вычислить разность d в соответствии с условиями задачи, необходимо лишь взять отношение разностей самих элементов и их порядковых номеров. Следует обратить на один важный момент внимание: разности берутся между "старшим" и "младшим" членами, то есть n > m ("старший" - имеется в виду стоящий дальше от начала последовательности, его абсолютное значение может быть как больше, так и меньше более "младшего" элемента).

Выражение для разности d прогрессии следует подставить в любое из уравнений в начале решения задачи, чтобы получить значение первого члена.

В наш век развития компьютерных технологий многие школьники стараются найти решения для своих заданий в Интернете, поэтому часто возникают вопросы такого типа: найти разность арифметической прогрессии онлайн. По подобному запросу поисковик выдаст ряд web-страниц, перейдя на которые, нужно будет ввести известные из условия данные (это могут быть как два члена прогрессии, так и сумма некоторого их числа) и моментально получить ответ. Тем не менее такой подход к решению задачи является непродуктивным в плане развития школьника и понимания сути поставленной перед ним задачи.

Решение без использования формул

Решим первую задачу, при этом не будем использовать никакие из приведенных формул. Пусть даны элементы ряда: а6 = 3, а9 = 18. Найти разность прогрессии арифметической.

Известные элементы стоят близко друг к другу в ряду. Сколько раз нужно добавить разность d к наименьшему, чтобы получить наибольшее из них? Три раза (первый раз добавив d, мы получим 7-й элемент, второй раз - восьмой, наконец, третий раз - девятый). Какое число нужно добавить к трем три раза, чтобы получить 18? Это число пять. Действительно:

Таким образом, неизвестная разность d = 5.

Конечно же, решение можно было выполнить с применением соответствующей формулы, но этого не было сделано намеренно. Подробное объяснение решения задачи должно стать понятным и ярким примером, что такое арифметическая прогрессия.

Задача, подобная предыдущей

Теперь решим похожую задачу, но изменим входные данные. Итак, следует найти если а3 = 2, а9 = 19.

Конечно, можно прибегнуть снова к методу решения "в лоб". Но поскольку даны элементы ряда, которые стоят относительно далеко друг от друга, такой метод станет не совсем удобным. А вот использование полученной формулы быстро приведет нас к ответу:

d = (а 9 - а 3) / (9 - 3) = (19 - 2) / (6) = 17 / 6 ≈ 2,83

Здесь мы округлили конечное число. Насколько это округление привело к ошибке, можно судить, проверив полученный результат:

a 9 = a 3 + 2,83 + 2,83 + 2,83 + 2,83 + 2,83 + 2,83 = 18,98

Этот результат отличается всего на 0,1 % от значения, данного в условии. Поэтому использованное округление до сотых можно считать успешным выбором.

Задачи на применение формулы для an члена

Рассмотрим классический пример задачи на определение неизвестной d: найти разность прогрессии арифметической, если а1 = 12, а5 = 40.

Когда даны два числа неизвестной алгебраической последовательности, причем одним из них является элемент a 1 , тогда не нужно долго думать, а следует сразу же применить формулу для a n члена. В данном случае имеем:

a 5 = a 1 + d * (5 - 1) => d = (a 5 - a 1) / 4 = (40 - 12) / 4 = 7

Мы получили точное число при делении, поэтому нет смысла проверять точность рассчитанного результата, как это было сделано в предыдущем пункте.

Решим еще одну аналогичную задачу: следует найти разность арифметической прогрессии, если а1 = 16, а8 = 37.

Используем аналогичный предыдущему подход и получаем:

a 8 = a 1 + d * (8 - 1) => d = (a 8 - a 1) / 7 = (37 - 16) / 7 = 3

Что еще следует знать о прогрессии арифметической

Помимо задач на нахождение неизвестной разности или отдельных элементов, часто необходимо решать проблемы суммы первых членов последовательности. Рассмотрение этих задач выходит за рамки темы статьи, тем не менее для полноты информации приведем общую формулу для суммы n чисел ряда:

∑ n i = 1 (a i) = n * (a 1 + a n) / 2

В чём главная суть формулы?

Эта формула позволяет найти любой ПО ЕГО НОМЕРУ "n" .

Разумеется, надо знать ещё первый член a 1 и разность прогрессии d , ну так без этих параметров конкретную прогрессию и не запишешь.

Заучить (или зашпаргалить) эту формулу мало. Надо усвоить её суть и поприменять формулу в различных задачках. Да ещё и не забыть в нужный момент, да...) Как не забыть - я не знаю. А вот как вспомнить, при необходимости, - точно подскажу. Тем, кто урок до конца осилит.)

Итак, разберёмся с формулой n-го члена арифметической прогрессии.

Что такое формула вообще - мы себе представляем.) Что такое арифметическая прогрессия, номер члена, разность прогресии - доступно изложено в предыдущем уроке. Загляните, кстати, если не читали. Там всё просто. Осталось разобраться, что такое n-й член.

Прогрессию в общем виде можно записать в виде ряда чисел:

a 1 , a 2 , a 3 , a 4 , a 5 , .....

a 1 - обозначает первый член арифметической прогрессии, a 3 - третий член, a 4 - четвёртый, и так далее. Если нас интересует пятый член, скажем, мы работаем с a 5 , если сто двадцатый - с a 120 .

А как обозначить в общем виде любой член арифметической прогрессии, с любым номером? Очень просто! Вот так:

a n

Это и есть n-й член арифметической прогрессии. Под буквой n скрываются сразу все номера членов: 1, 2, 3, 4, и так далее.

И что нам даёт такая запись? Подумаешь, вместо цифры буковку записали...

Эта запись даёт нам мощный инструмент для работы с арифметической прогрессией. Используя обозначение a n , мы можем быстро найти любой член любой арифметической прогрессии. И ещё кучу задач по прогрессии решить. Сами дальше увидите.

В формуле n-го члена арифметической прогрессии:

a n = a 1 + (n-1)d

a 1 - первый член арифметической прогрессии;

n - номер члена.

Формула связывает ключевые параметры любой прогрессии: a n ; a 1 ; d и n . Вокруг этих параметров и крутятся все задачки по прогрессии.

Формула n-го члена может использоваться и для записи конкретной прогрессии. Например, в задаче может быть сказано, что прогрессия задана условием:

a n = 5 + (n-1)·2.

Такая задачка может и в тупик поставить... Нет ни ряда, ни разности... Но, сравнивая условие с формулой, легко сообразить, что в этой прогрессии a 1 =5, а d=2.

А бывает ещё злее!) Если взять то же условие: a n = 5 + (n-1)·2, да раскрыть скобки и привести подобные? Получим новую формулу:

a n = 3 + 2n.

Это Только не общая, а для конкретной прогрессии. Вот здесь и таится подводный камень. Некоторые думают, что первый член - это тройка. Хотя реально первый член - пятёрка... Чуть ниже мы поработаем с такой видоизменённой формулой.

В задачах на прогрессию встречается ещё одно обозначение - a n+1 . Это, как вы догадались, "эн плюс первый" член прогрессии. Смысл его прост и безобиден.) Это член прогрессии, номер которого больше номера n на единичку. Например, если в какой-нибудь задаче мы берём за a n пятый член, то a n+1 будет шестым членом. И тому подобное.

Чаще всего обозначение a n+1 встречается в рекуррентных формулах. Не пугайтесь этого страшного слова!) Это просто способ выражения члена арифметической прогрессии через предыдущий. Допустим, нам дана арифметическая прогрессия вот в таком виде, с помощью рекуррентной формулы:

a n+1 = a n +3

a 2 = a 1 + 3 = 5+3 = 8

a 3 = a 2 + 3 = 8+3 = 11

Четвёртый - через третий, пятый - через четвёртый, и так далее. А как посчитать сразу, скажем двадцатый член, a 20 ? А никак!) Пока 19-й член не узнаем, 20-й не посчитать. В этом и есть принципиальное отличие рекуррентной формулы от формулы n-го члена. Рекуррентная работает только через предыдущий член, а формула n-го члена - через первый и позволяет сразу находить любой член по его номеру. Не просчитывая весь ряд чисел по порядочку.

В арифметической прогрессии рекуррентную формулу легко превратить в обычную. Посчитать пару последовательных членов, вычислить разность d, найти, если надо, первый член a 1 , записать формулу в обычном виде, да и работать с ней. В ГИА подобные задания частенько встречаются.

Применение формулы n-го члена арифметической прогрессии.

Для начала рассмотрим прямое применение формулы. В конце предыдущего урока была задачка:

Дана арифметическая прогрессия (a n). Найти a 121 , если a 1 =3, а d=1/6.

Эту задачку можно безо всяких формул решить, просто исходя из смысла арифметической прогрессии. Прибавлять, да прибавлять... Часок-другой.)

А по формуле решение займёт меньше минуты. Можете засекать время.) Решаем.

В условиях приведены все данные для использования формулы: a 1 =3, d=1/6. Остаётся сообразить, чему равно n. Не вопрос! Нам надо найти a 121 . Вот и пишем:

Прошу обратить внимание! Вместо индекса n появилось конкретное число: 121. Что вполне логично.) Нас интересует член арифметической прогрессии номер сто двадцать один. Вот это и будет наше n. Именно это значение n = 121 мы и подставим дальше в формулу, в скобки. Подставляем все числа в формулу и считаем:

a 121 = 3 + (121-1)·1/6 = 3+20 = 23

Вот и все дела. Так же быстро можно было бы найти и пятьсот десятый член, и тысяча третий, любой. Ставим вместо n нужный номер в индексе у буквы "a" и в скобках, да и считаем.

Напомню суть: эта формула позволяет найти любой член арифметической прогрессии ПО ЕГО НОМЕРУ "n" .

Решим задание похитрее. Пусть нам попалась такая задачка:

Найдите первый член арифметической прогрессии (a n), если a 17 =-2; d=-0,5.

Если возникли затруднения, подскажу первый шаг. Запишите формулу n-го члена арифметической прогрессии! Да-да. Руками запишите, прямо в тетрадке:

a n = a 1 + (n-1)d

А теперь, глядя на буквы формулы, соображаем, какие данные у нас есть, а чего не хватает? Имеется d=-0,5, имеется семнадцатый член... Всё? Если считаете, что всё, то задачу не решите, да...

У нас ещё имеется номер n ! В условии a 17 =-2 спрятаны два параметра. Это и значение семнадцатого члена (-2), и его номер (17). Т.е. n=17. Эта "мелочь" часто проскакивает мимо головы, а без неё, (без "мелочи", а не головы!) задачу не решить. Хотя... и без головы тоже.)

Теперь можно просто тупо подставить наши данные в формулу:

a 17 = a 1 + (17-1)·(-0,5)

Ах да, a 17 нам известно, это -2. Ну ладно, подставим:

-2 = a 1 + (17-1)·(-0,5)

Вот, в сущности, и всё. Осталось выразить первый член арифметической прогрессии из формулы, да посчитать. Получится ответ: a 1 = 6.

Такой приём - запись формулы и простая подстановка известных данных - здорово помогает в простых заданиях. Ну, надо, конечно, уметь выражать переменную из формулы, а что делать!? Без этого умения математику можно вообще не изучать...

Ещё одна популярная задачка:

Найдите разность арифметической прогрессии (a n), если a 1 =2; a 15 =12.

Что делаем? Вы удивитесь, пишем формулу!)

a n = a 1 + (n-1)d

Соображаем, что нам известно: a 1 =2; a 15 =12; и (специально выделю!) n=15. Смело подставляем в формулу:

12=2 + (15-1)d

Считаем арифметику.)

12=2 + 14d

d =10/14 = 5/7

Это правильный ответ.

Так, задачи на a n , a 1 и d порешали. Осталось научиться номер находить:

Число 99 является членом арифметической прогрессии (a n), где a 1 =12; d=3. Найти номер этого члена.

Подставляем в формулу n-го члена известные нам величины:

a n = 12 + (n-1)·3

На первый взгляд, здесь две неизвестные величины: a n и n. Но a n - это какой-то член прогрессии с номером n ... И этот член прогрессии мы знаем! Это 99. Мы не знаем его номер n, так этот номер и требуется найти. Подставляем член прогрессии 99 в формулу:

99 = 12 + (n-1)·3

Выражаем из формулы n , считаем. Получим ответ: n=30.

А теперь задачка на ту же тему, но более творческая):

Определите, будет ли число 117 членом арифметической прогрессии (a n):

-3,6; -2,4; -1,2 ...

Опять пишем формулу. Что, нет никаких параметров? Гм... А глазки нам зачем дадены?) Первый член прогрессии видим? Видим. Это -3,6. Можно смело записать: a 1 =-3,6. Разность d можно из ряда определить? Легко, если знаете, что такое разность арифметической прогрессии:

d = -2,4 - (-3,6) = 1,2

Так, самое простое сделали. Осталось разобраться с неизвестным номером n и непонятным числом 117. В предыдущей задачке хоть было известно, что дан именно член прогрессии. А здесь и того не знаем... Как быть!? Ну, как быть, как быть... Включить творческие способности!)

Мы предположим, что 117 - это, всё-таки, член нашей прогрессии. С неизвестным номером n . И, точно как в предыдущей задаче, попробуем найти этот номер. Т.е. пишем формулу (да-да!)) и подставляем наши числа:

117 = -3,6 + (n-1)·1,2

Опять выражаем из формулы n , считаем и получаем:

Опаньки! Номер получился дробный! Сто один с половиной. А дробных номеров в прогрессиях не бывает. Какой вывод сделаем? Да! Число 117 не является членом нашей прогрессии. Оно находится где-то между сто первым и сто вторым членом. Если бы номер получился натуральным, т.е. положительным целым, то число было бы членом прогрессии с найденным номером. А в нашем случае, ответ задачи будет: нет.

Задача на основе реального варианта ГИА:

Арифметическая прогрессия задана условием:

a n = -4 + 6,8n

Найти первый и десятый члены прогрессии.

Здесь прогрессия задана не совсем привычным образом. Формула какая-то... Бывает.) Однако, эта формула (как я писал выше) - тоже формула n-го члена арифметической прогрессии! Она тоже позволяет найти любой член прогрессии по его номеру.

Ищем первый член. Тот, кто думает. что первый член - минус четыре, фатально ошибается!) Потому, что формула в задаче - видоизменённая. Первый член арифметической прогрессии в ней спрятан. Ничего, сейчас отыщем.)

Так же, как и в предыдущих задачах, подставляем n=1 в данную формулу:

a 1 = -4 + 6,8·1 = 2,8

Вот! Первый член 2,8, а не -4!

Аналогично ищем десятый член:

a 10 = -4 + 6,8·10 = 64

Вот и все дела.

А теперь, тем кто дочитал до этих строк, - обещанный бонус.)

Предположим, в сложной боевой обстановке ГИА или ЕГЭ, вы подзабыли полезную формулу n-го члена арифметической прогрессии. Что-то припоминается, но неуверенно как-то... То ли n там, то ли n+1, то ли n-1... Как быть!?

Спокойствие! Эту формулку легко вывести. Не очень строго, но для уверенности и правильного решения точно хватит!) Для вывода достаточно помнить элементарный смысл арифметической прогрессии и иметь пару-тройку минут времени. Нужно просто нарисовать картинку. Для наглядности.

Рисуем числовую ось и отмечаем на ней первый. второй, третий и т.п. члены. И отмечаем разность d между членами. Вот так:

Смотрим на картинку и соображаем: чему равняется второй член? Второй одно d :

a 2 =a 1 +1 ·d

Чему равняется третий член? Третий член равняется первый член плюс два d .

a 3 =a 1 +2 ·d

Улавливаете? Я не зря некоторые слова выделяю жирным шрифтом. Ну ладно, ещё один шаг).

Чему равняется четвёртый член? Четвёртый член равняется первый член плюс три d .

a 4 =a 1 +3 ·d

Пора сообразить, что количество промежутков, т.е. d , всегда на один меньше, чем номер искомого члена n . Т.е., до номера n, количество промежутков будет n-1. Стало быть, формула будет (без вариантов!):

a n = a 1 + (n-1)d

Вообще, наглядные картинки очень помогают решать многие задачи в математике. Не пренебрегайте картинками. Но если уж картинку нарисовать затруднительно, то... только формула!) Кроме того, формула n-го члена позволяет подключить к решению весь мощный арсенал математики - уравнения, неравенства, системы и т.д. Картинку-то в уравнение не вставишь...

Задания для самостоятельного решения.

Для разминки:

1. В арифметической прогрессии (a n) a 2 =3; a 5 =5,1. Найти a 3 .

Подсказка: по картинке задача решается секунд за 20... По формуле - сложнее получается. Но для освоения формулы - полезнее.) В Разделе 555 эта задачка решена и по картинке, и по формуле. Почувствуйте разницу!)

А это - уже не разминка.)

2. В арифметической прогрессии (a n) a 85 =19,1; a 236 =49, 3. Найти a 3 .

Что, неохота картинку рисовать?) Ещё бы! Уж лучше по формуле, да...

3. Арифметическая прогрессия задана условием: a 1 =-5,5; a n+1 = a n +0,5. Найдите сто двадцать пятый член этой прогрессии.

В этом задании прогрессия задана рекуррентным способом. Но считать до сто двадцать пятого члена... Не всем такой подвиг под силу.) Зато формула n-го члена по силам каждому!

4. Дана арифметическая прогрессия (a n):

-148; -143,8; -139,6; -135,4, .....

Найти номер наименьшего положительного члена прогрессии.

5. По условию задания 4 найти сумму наименьшего положительного и наибольшего отрицательного членов прогрессии.

6. Произведение пятого и двенадцатого членов возрастающей арифметической прогрессии равно -2,5, а сумма третьего и одиннадцатого членов равна нулю. Найти a 14 .

Не самая простая задачка, да...) Здесь способ "на пальцах" не прокатит. Придётся формулы писать да уравнения решать.

Ответы (в беспорядке):

3,7; 3,5; 2,2; 37; 2,7; 56,5

Получилось? Это приятно!)

Не всё получается? Бывает. Кстати, в последнем задании есть один тонкий момент. Внимательность при чтении задачи потребуется. И логика.

Решение всех этих задач подробно разобрано в Разделе 555. И элемент фантазии для четвёртой, и тонкий момент для шестой, и общие подходы для решения всяких задач на формулу n-го члена - всё расписано. Рекомендую.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.


Да, да: арифметическая прогрессия — это вам не игрушки:)

Что ж, друзья, если вы читаете этот текст, то внутренний кэп-очевидность подсказывает мне, что вы пока ещё не знаете, что такое арифметическая прогрессия, но очень (нет, вот так: ОООООЧЕНЬ!) хотите узнать. Поэтому не буду мучать вас длинными вступлениями и сразу перейду к делу.

Для начала парочка примеров. Рассмотрим несколько наборов чисел:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt{2};\ 2\sqrt{2};\ 3\sqrt{2};...$

Что общего у всех этих наборов? На первый взгляд — ничего. Но на самом деле кое-что есть. А именно: каждый следующий элемент отличается от предыдущего на одно и то же число .

Судите сами. Первый набор — это просто идущие подряд числа, каждое следующее на единицу больше предыдущего. Во втором случае разница между рядом стоящими числами уже равна пяти, но эта разница всё равно постоянна. В третьем случае вообще корни. Однако $2\sqrt{2}=\sqrt{2}+\sqrt{2}$, а $3\sqrt{2}=2\sqrt{2}+\sqrt{2}$, т.е. и в этом случае каждый следующий элемент просто возрастает на $\sqrt{2}$ (и пусть вас не пугает, что это число — иррациональное).

Так вот: все такие последовательности как раз и называются арифметическими прогрессиями. Дадим строгое определение:

Определение. Последовательность чисел, в которой каждое следующее отличается от предыдущего ровно на одну и ту же величину, называется арифметической прогрессией. Сама величина, на которую отличаются числа, называется разностью прогрессии и чаще всего обозначается буквой $d$.

Обозначение: $\left({{a}_{n}} \right)$ — сама прогрессия, $d$ — её разность.

И сразу парочка важных замечаний. Во-первых, прогрессией считается лишь упорядоченная последовательность чисел: их разрешено читать строго в том порядке, в котором они записаны — и никак иначе. Переставлять и менять местами числа нельзя.

Во-вторых, сама последовательность может являться как конечной, так и бесконечной. К примеру, набор {1; 2; 3} — это, очевидно, конечная арифметическая прогрессия. Но если записать что-нибудь в духе {1; 2; 3; 4; ...} — это уже бесконечная прогрессия. Многоточие после четвёрки как бы намекает, что дальше идёт ещё довольно много чисел. Бесконечно много, например.:)

Ещё хотел бы отметить, что прогрессии бывают возрастающими и убывающими. Возрастающие мы уже видели — тот же набор {1; 2; 3; 4; ...}. А вот примеры убывающих прогрессий:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt{5};\ \sqrt{5}-1;\ \sqrt{5}-2;\ \sqrt{5}-3;...$

Ладно, ладно: последний пример может показаться чересчур сложным. Но остальные, думаю, вам понятны. Поэтому введём новые определения:

Определение. Арифметическая прогрессия называется:

  1. возрастающей, если каждый следующий элемент больше предыдущего;
  2. убывающей, если, напротив, каждый последующий элемент меньше предыдущего.

Кроме того, существуют так называемые «стационарные» последовательности — они состоят из одного и того же повторяющегося числа. Например, {3; 3; 3; ...}.

Остаётся лишь один вопрос: как отличить возрастающую прогрессию от убывающей? К счастью, тут всё зависит лишь от того, каков знак числа $d$, т.е. разности прогрессии:

  1. Если $d \gt 0$, то прогрессия возрастает;
  2. Если $d \lt 0$, то прогрессия, очевидно, убывает;
  3. Наконец, есть случай $d=0$ — в этом случае вся прогрессия сводится к стационарной последовательности одинаковых чисел: {1; 1; 1; 1; ...} и т.д.

Попробуем рассчитать разность $d$ для трёх убывающих прогрессий, приведённых выше. Для этого достаточно взять любые два соседних элемента (например, первый и второй) и вычесть из числа, стоящего справа, число, стоящее слева. Выглядеть это будет вот так:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt{5}-1-\sqrt{5}=-1$.

Как видим, во всех трёх случаях разность действительно получилась отрицательной. И теперь, когда мы более-менее разобрались с определениями, пора разобраться с тем, как описываются прогрессии и какие у них свойства.

Члены прогрессии и рекуррентная формула

Поскольку элементы наших последовательностей нельзя менять местами, их можно пронумеровать:

\[\left({{a}_{n}} \right)=\left\{ {{a}_{1}},\ {{a}_{2}},{{a}_{3}},... \right\}\]

Отдельные элементы этого набора называются членами прогрессии. На них так и указывают с помощью номера: первый член, второй член и т.д.

Кроме того, как мы уже знаем, соседние члены прогрессии связаны формулой:

\[{{a}_{n}}-{{a}_{n-1}}=d\Rightarrow {{a}_{n}}={{a}_{n-1}}+d\]

Короче говоря, чтобы найти $n$-й член прогрессии, нужно знать $n-1$-й член и разность $d$. Такая формула называется рекуррентной, поскольку с её помощью можно найти любое число, лишь зная предыдущее (а по факту — все предыдущие). Это очень неудобно, поэтому существует более хитрая формула, которая сводит любые вычисления к первому члену и разности:

\[{{a}_{n}}={{a}_{1}}+\left(n-1 \right)d\]

Наверняка вы уже встречались с этой формулой. Её любят давать во всяких справочниках и решебниках. Да и в любом толковом учебнике по математике она идёт одной из первых.

Тем не менее предлагаю немного потренироваться.

Задача №1. Выпишите первые три члена арифметической прогрессии $\left({{a}_{n}} \right)$, если ${{a}_{1}}=8,d=-5$.

Решение. Итак, нам известен первый член ${{a}_{1}}=8$ и разность прогрессии $d=-5$. Воспользуемся только что приведённой формулой и подставим $n=1$, $n=2$ и $n=3$:

\[\begin{align} & {{a}_{n}}={{a}_{1}}+\left(n-1 \right)d; \\ & {{a}_{1}}={{a}_{1}}+\left(1-1 \right)d={{a}_{1}}=8; \\ & {{a}_{2}}={{a}_{1}}+\left(2-1 \right)d={{a}_{1}}+d=8-5=3; \\ & {{a}_{3}}={{a}_{1}}+\left(3-1 \right)d={{a}_{1}}+2d=8-10=-2. \\ \end{align}\]

Ответ: {8; 3; −2}

Вот и всё! Обратите внимание: наша прогрессия — убывающая.

Конечно, $n=1$ можно было и не подставлять — первый член нам и так известен. Впрочем, подставив единицу, мы убедились, что даже для первого члена наша формула работает. В остальных случаях всё свелось к банальной арифметике.

Задача №2. Выпишите первые три члена арифметической прогрессии, если её седьмой член равен −40, а семнадцатый член равен −50.

Решение. Запишем условие задачи в привычных терминах:

\[{{a}_{7}}=-40;\quad {{a}_{17}}=-50.\]

\[\left\{ \begin{align} & {{a}_{7}}={{a}_{1}}+6d \\ & {{a}_{17}}={{a}_{1}}+16d \\ \end{align} \right.\]

\[\left\{ \begin{align} & {{a}_{1}}+6d=-40 \\ & {{a}_{1}}+16d=-50 \\ \end{align} \right.\]

Знак системы я поставил потому, что эти требования должны выполняться одновременно. А теперь заметим, если вычесть из второго уравнения первое (мы имеем право это сделать, т.к. у нас система), то получим вот что:

\[\begin{align} & {{a}_{1}}+16d-\left({{a}_{1}}+6d \right)=-50-\left(-40 \right); \\ & {{a}_{1}}+16d-{{a}_{1}}-6d=-50+40; \\ & 10d=-10; \\ & d=-1. \\ \end{align}\]

Вот так просто мы нашли разность прогрессии! Осталось подставить найденное число в любое из уравнений системы. Например, в первое:

\[\begin{matrix} {{a}_{1}}+6d=-40;\quad d=-1 \\ \Downarrow \\ {{a}_{1}}-6=-40; \\ {{a}_{1}}=-40+6=-34. \\ \end{matrix}\]

Теперь, зная первый член и разность, осталось найти второй и третий член:

\[\begin{align} & {{a}_{2}}={{a}_{1}}+d=-34-1=-35; \\ & {{a}_{3}}={{a}_{1}}+2d=-34-2=-36. \\ \end{align}\]

Готово! Задача решена.

Ответ: {−34; −35; −36}

Обратите внимание на любопытное свойство прогрессии, которое мы обнаружили: если взять $n$-й и $m$-й члены и вычесть их друг из друга, то мы получим разность прогрессии, умноженную на число $n-m$:

\[{{a}_{n}}-{{a}_{m}}=d\cdot \left(n-m \right)\]

Простое, но очень полезное свойство, которое обязательно надо знать — с его помощью можно значительно ускорить решение многих задач по прогрессиям. Вот яркий тому пример:

Задача №3. Пятый член арифметической прогрессии равен 8,4, а её десятый член равен 14,4. Найдите пятнадцатый член этой прогрессии.

Решение. Поскольку ${{a}_{5}}=8,4$, ${{a}_{10}}=14,4$, а нужно найти ${{a}_{15}}$, то заметим следующее:

\[\begin{align} & {{a}_{15}}-{{a}_{10}}=5d; \\ & {{a}_{10}}-{{a}_{5}}=5d. \\ \end{align}\]

Но по условию ${{a}_{10}}-{{a}_{5}}=14,4-8,4=6$, поэтому $5d=6$, откуда имеем:

\[\begin{align} & {{a}_{15}}-14,4=6; \\ & {{a}_{15}}=6+14,4=20,4. \\ \end{align}\]

Ответ: 20,4

Вот и всё! Нам не потребовалось составлять какие-то системы уравнений и считать первый член и разность — всё решилось буквально в пару строчек.

Теперь рассмотрим другой вид задач — на поиск отрицательных и положительных членов прогрессии. Не секрет, что если прогрессия возрастает, при этом первый член у неё отрицательный, то рано или поздно в ней появятся положительные члены. И напротив: члены убывающей прогрессии рано или поздно станут отрицательными.

При этом далеко не всегда можно нащупать этот момент «в лоб», последовательно перебирая элементы. Зачастую задачи составлены так, что без знания формул вычисления заняли бы несколько листов — мы просто уснули бы, пока нашли ответ. Поэтому попробуем решить эти задачи более быстрым способом.

Задача №4. Сколько отрицательных членов в арифметической прогрессии −38,5; −35,8; …?

Решение. Итак, ${{a}_{1}}=-38,5$, ${{a}_{2}}=-35,8$, откуда сразу находим разность:

Заметим, что разность положительна, поэтому прогрессия возрастает. Первый член отрицателен, поэтому действительно в какой-то момент мы наткнёмся на положительные числа. Вопрос лишь в том, когда это произойдёт.

Попробуем выяснить: до каких пор (т.е. до какого натурального числа $n$) сохраняется отрицательность членов:

\[\begin{align} & {{a}_{n}} \lt 0\Rightarrow {{a}_{1}}+\left(n-1 \right)d \lt 0; \\ & -38,5+\left(n-1 \right)\cdot 2,7 \lt 0;\quad \left| \cdot 10 \right. \\ & -385+27\cdot \left(n-1 \right) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac{7}{27}\Rightarrow {{n}_{\max }}=15. \\ \end{align}\]

Последняя строчка требует пояснения. Итак, нам известно, что $n \lt 15\frac{7}{27}$. С другой стороны, нас устроят лишь целые значения номера (более того: $n\in \mathbb{N}$), поэтому наибольший допустимый номер — это именно $n=15$, а ни в коем случае не 16.

Задача №5. В арифметической прогрессии ${{}_{5}}=-150,{{}_{6}}=-147$. Найдите номер первого положительного члена этой прогрессии.

Это была бы точь-в-точь такая же задача, как и предыдущая, однако нам неизвестно ${{a}_{1}}$. Зато известны соседние члены: ${{a}_{5}}$ и ${{a}_{6}}$, поэтому мы легко найдём разность прогрессии:

Кроме того, попробуем выразить пятый член через первый и разность по стандартной формуле:

\[\begin{align} & {{a}_{n}}={{a}_{1}}+\left(n-1 \right)\cdot d; \\ & {{a}_{5}}={{a}_{1}}+4d; \\ & -150={{a}_{1}}+4\cdot 3; \\ & {{a}_{1}}=-150-12=-162. \\ \end{align}\]

Теперь поступаем по аналогии с предыдущей задачей. Выясняем, в какой момент в нашей последовательности возникнут положительные числа:

\[\begin{align} & {{a}_{n}}=-162+\left(n-1 \right)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\Rightarrow {{n}_{\min }}=56. \\ \end{align}\]

Минимальное целочисленное решение данного неравенства — число 56.

Обратите внимание: в последнем задании всё свелось к строгому неравенству, поэтому вариант $n=55$ нас не устроит.

Теперь, когда мы научились решать простые задачи, перейдём к более сложным. Но для начала давайте изучим ещё одно очень полезное свойство арифметических прогрессий, которое в будущем сэкономит нам кучу времени и неравных клеток.:)

Среднее арифметическое и равные отступы

Рассмотрим несколько последовательных членов возрастающей арифметической прогрессии $\left({{a}_{n}} \right)$. Попробуем отметить их на числовой прямой:

Члены арифметической прогрессии на числовой прямой

Я специально отметил произвольные члены ${{a}_{n-3}},...,{{a}_{n+3}}$, а не какие-нибудь ${{a}_{1}},\ {{a}_{2}},\ {{a}_{3}}$ и т.д. Потому что правило, о котором я сейчас расскажу, одинаково работает для любых «отрезков».

А правило очень простое. Давайте вспомним рекуррентную формулу и запишем её для всех отмеченных членов:

\[\begin{align} & {{a}_{n-2}}={{a}_{n-3}}+d; \\ & {{a}_{n-1}}={{a}_{n-2}}+d; \\ & {{a}_{n}}={{a}_{n-1}}+d; \\ & {{a}_{n+1}}={{a}_{n}}+d; \\ & {{a}_{n+2}}={{a}_{n+1}}+d; \\ \end{align}\]

Однако эти равенства можно переписать иначе:

\[\begin{align} & {{a}_{n-1}}={{a}_{n}}-d; \\ & {{a}_{n-2}}={{a}_{n}}-2d; \\ & {{a}_{n-3}}={{a}_{n}}-3d; \\ & {{a}_{n+1}}={{a}_{n}}+d; \\ & {{a}_{n+2}}={{a}_{n}}+2d; \\ & {{a}_{n+3}}={{a}_{n}}+3d; \\ \end{align}\]

Ну и что с того? А то, что члены ${{a}_{n-1}}$ и ${{a}_{n+1}}$ лежат на одном и том же расстоянии от ${{a}_{n}}$. И это расстояние равно $d$. То же самое можно сказать про члены ${{a}_{n-2}}$ и ${{a}_{n+2}}$ — они тоже удалены от ${{a}_{n}}$ на одинаковое расстояние, равное $2d$. Продолжать можно до бесконечности, но смысл хорошо иллюстрирует картинка


Члены прогрессии лежат на одинаковом расстоянии от центра

Что это значит для нас? Это значит, что можно найти ${{a}_{n}}$, если известны числа-соседи:

\[{{a}_{n}}=\frac{{{a}_{n-1}}+{{a}_{n+1}}}{2}\]

Мы вывели великолепное утверждение: всякий член арифметической прогрессии равен среднему арифметическому соседних членов! Более того: мы можем отступить от нашего ${{a}_{n}}$ влево и вправо не на один шаг, а на $k$ шагов — и всё равно формула будет верна:

\[{{a}_{n}}=\frac{{{a}_{n-k}}+{{a}_{n+k}}}{2}\]

Т.е. мы спокойно можем найти какое-нибудь ${{a}_{150}}$, если знаем ${{a}_{100}}$ и ${{a}_{200}}$, потому что ${{a}_{150}}=\frac{{{a}_{100}}+{{a}_{200}}}{2}$. На первый взгляд может показаться, что данный факт не даёт нам ничего полезного. Однако на практике многие задачи специально «заточены» под использование среднего арифметического. Взгляните:

Задача №6. Найдите все значения $x$, при которых числа $-6{{x}^{2}}$, $x+1$ и $14+4{{x}^{2}}$ являются последовательными членами арифметической прогрессии (в указанном порядке).

Решение. Поскольку указанные числа являются членами прогрессии, для них выполняется условие среднего арифметического: центральный элемент $x+1$ можно выразить через соседние элементы:

\[\begin{align} & x+1=\frac{-6{{x}^{2}}+14+4{{x}^{2}}}{2}; \\ & x+1=\frac{14-2{{x}^{2}}}{2}; \\ & x+1=7-{{x}^{2}}; \\ & {{x}^{2}}+x-6=0. \\ \end{align}\]

Получилось классическое квадратное уравнение. Его корни: $x=2$ и $x=-3$ — это и есть ответы.

Ответ: −3; 2.

Задача №7. Найдите значения $$, при которых числа $-1;4-3;{{}^{2}}+1$ составляют арифметическую прогрессию (в указанном порядке).

Решение. Опять выразим средний член через среднее арифметическое соседних членов:

\[\begin{align} & 4x-3=\frac{x-1+{{x}^{2}}+1}{2}; \\ & 4x-3=\frac{{{x}^{2}}+x}{2};\quad \left| \cdot 2 \right.; \\ & 8x-6={{x}^{2}}+x; \\ & {{x}^{2}}-7x+6=0. \\ \end{align}\]

Снова квадратное уравнение. И снова два корня: $x=6$ и$x=1$.

Ответ: 1; 6.

Если в процессе решения задачи у вас вылезают какие-то зверские числа, либо вы не до конца уверены в правильности найденных ответов, то есть замечательный приём, позволяющий проверить: правильно ли мы решили задачу?

Допустим, в задаче №6 мы получили ответы −3 и 2. Как проверить, что эти ответы верны? Давайте просто подставим их в исходное условие и посмотрим, что получится. Напомню, что у нас есть три числа ($-6{{}^{2}}$, $+1$ и $14+4{{}^{2}}$), которые должны составлять арифметическую прогрессию. Подставим $x=-3$:

\[\begin{align} & x=-3\Rightarrow \\ & -6{{x}^{2}}=-54; \\ & x+1=-2; \\ & 14+4{{x}^{2}}=50. \end{align}\]

Получили числа −54; −2; 50, которые отличаются на 52 — несомненно, это арифметическая прогрессия. То же самое происходит и при $x=2$:

\[\begin{align} & x=2\Rightarrow \\ & -6{{x}^{2}}=-24; \\ & x+1=3; \\ & 14+4{{x}^{2}}=30. \end{align}\]

Опять прогрессия, но с разностью 27. Таким образом, задача решена верно. Желающие могут проверить вторую задачу самостоятельно, но сразу скажу: там тоже всё верно.

В целом, решая последние задачи, мы наткнулись на ещё один интересный факт, который тоже необходимо запомнить:

Если три числа таковы, что второе является средним арифметическим первого и последнего, то эти числа образуют арифметическую прогрессию.

В будущем понимание этого утверждения позволит нам буквально «конструировать» нужные прогрессии, опираясь на условие задачи. Но прежде чем мы займёмся подобным «конструированием», следует обратить внимание на ещё один факт, который прямо следует из уже рассмотренного.

Группировка и сумма элементов

Давайте ещё раз вернёмся к числовой оси. Отметим там несколько членов прогрессии, между которыми, возможно. стоит очень много других членов:

На числовой прямой отмечены 6 элементов

Попробуем выразить «левый хвост» через ${{a}_{n}}$ и $d$, а «правый хвост» через ${{a}_{k}}$ и $d$. Это очень просто:

\[\begin{align} & {{a}_{n+1}}={{a}_{n}}+d; \\ & {{a}_{n+2}}={{a}_{n}}+2d; \\ & {{a}_{k-1}}={{a}_{k}}-d; \\ & {{a}_{k-2}}={{a}_{k}}-2d. \\ \end{align}\]

А теперь заметим, что равны следующие суммы:

\[\begin{align} & {{a}_{n}}+{{a}_{k}}=S; \\ & {{a}_{n+1}}+{{a}_{k-1}}={{a}_{n}}+d+{{a}_{k}}-d=S; \\ & {{a}_{n+2}}+{{a}_{k-2}}={{a}_{n}}+2d+{{a}_{k}}-2d=S. \end{align}\]

Проще говоря, если мы рассмотрим в качестве старта два элемента прогрессии, которые в сумме равны какому-нибудь числу $S$, а затем начнём шагать от этих элементов в противоположные стороны (навстречу друг другу или наоборот на удаление), то суммы элементов, на которые мы будем натыкаться, тоже будут равны $S$. Наиболее наглядно это можно представить графически:


Одинаковые отступы дают равные суммы

Понимание данного факта позволит нам решать задачи принципиально более высокого уровня сложности, нежели те, что мы рассматривали выше. Например, такие:

Задача №8. Определите разность арифметической прогрессии, в которой первый член равен 66, а произведение второго и двенадцатого членов является наименьшим из возможных.

Решение. Запишем всё, что нам известно:

\[\begin{align} & {{a}_{1}}=66; \\ & d=? \\ & {{a}_{2}}\cdot {{a}_{12}}=\min . \end{align}\]

Итак, нам неизвестна разность прогрессии $d$. Собственно, вокруг разности и будет строиться всё решение, поскольку произведение ${{a}_{2}}\cdot {{a}_{12}}$ можно переписать следующим образом:

\[\begin{align} & {{a}_{2}}={{a}_{1}}+d=66+d; \\ & {{a}_{12}}={{a}_{1}}+11d=66+11d; \\ & {{a}_{2}}\cdot {{a}_{12}}=\left(66+d \right)\cdot \left(66+11d \right)= \\ & =11\cdot \left(d+66 \right)\cdot \left(d+6 \right). \end{align}\]

Для тех, кто в танке: я вынес общий множитель 11 из второй скобки. Таким образом, искомое произведение представляет собой квадратичную функцию относительно переменной $d$. Поэтому рассмотрим функцию $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ — её графиком будет парабола ветвями вверх, т.к. если раскрыть скобки, то мы получим:

\[\begin{align} & f\left(d \right)=11\left({{d}^{2}}+66d+6d+66\cdot 6 \right)= \\ & =11{{d}^{2}}+11\cdot 72d+11\cdot 66\cdot 6 \end{align}\]

Как видим, коэффициент при старшем слагаемом равен 11 — это положительное число, поэтому действительно имеем дело с параболой ветвями вверх:


график квадратичной функции — парабола

Обратите внимание: минимальное значение эта парабола принимает в своей вершине с абсциссой ${{d}_{0}}$. Конечно, мы можем посчитать эту абсциссу по стандартной схеме (есть же формула ${{d}_{0}}={-b}/{2a}\;$), но куда разумнее будет заметить, что искомая вершина лежит на оси симметрии параболы, поэтому точка ${{d}_{0}}$ равноудалена от корней уравнения $f\left(d \right)=0$:

\[\begin{align} & f\left(d \right)=0; \\ & 11\cdot \left(d+66 \right)\cdot \left(d+6 \right)=0; \\ & {{d}_{1}}=-66;\quad {{d}_{2}}=-6. \\ \end{align}\]

Именно поэтому я не особо спешил раскрывать скобки: в исходном виде корни было найти очень и очень просто. Следовательно, абсцисса равна среднему арифметическому чисел −66 и −6:

\[{{d}_{0}}=\frac{-66-6}{2}=-36\]

Что даёт нам обнаруженное число? При нём требуемое произведение принимает наименьшее значение (мы, кстати, так и не посчитали ${{y}_{\min }}$ — от нас это не требуется). Одновременно это число является разностью исходной прогрессии, т.е. мы нашли ответ.:)

Ответ: −36

Задача №9. Между числами $-\frac{1}{2}$ и $-\frac{1}{6}$ вставьте три числа так, чтобы они вместе с данными числами составили арифметическую прогрессию.

Решение. По сути, нам нужно составить последовательность из пяти чисел, причём первое и последнее число уже известно. Обозначим недостающие числа переменными $x$, $y$ и $z$:

\[\left({{a}_{n}} \right)=\left\{ -\frac{1}{2};x;y;z;-\frac{1}{6} \right\}\]

Отметим, что число $y$ является «серединой» нашей последовательности — оно равноудалено и от чисел $x$ и $z$, и от чисел $-\frac{1}{2}$ и $-\frac{1}{6}$. И если из чисел $x$ и $z$ мы в данный момент не можем получить $y$, то вот с концами прогрессии дело обстоит иначе. Вспоминаем про среднее арифметическое:

Теперь, зная $y$, мы найдём оставшиеся числа. Заметим, что $x$ лежит между числами $-\frac{1}{2}$ и только что найденным $y=-\frac{1}{3}$. Поэтому

Аналогично рассуждая, находим оставшееся число:

Готово! Мы нашли все три числа. Запишем их в ответе в том порядке, в котором они должны быть вставлены между исходными числами.

Ответ: $-\frac{5}{12};\ -\frac{1}{3};\ -\frac{1}{4}$

Задача №10. Между числами 2 и 42 вставьте несколько чисел, которые вместе с данными числами образуют арифметическую прогрессию, если известно, что сумма первого, второго и последнего из вставленных чисел равна 56.

Решение. Ещё более сложная задача, которая, однако, решается по той же схеме, что и предыдущие — через среднее арифметическое. Проблема в том, что нам неизвестно, сколько конкретно чисел надо вставить. Поэтому положим для опредлённости, что после вставки всего будет ровно $n$ чисел, причём первое из них — это 2, а последнее — 42. В этом случае искомая арифметическая прогрессия представима в виде:

\[\left({{a}_{n}} \right)=\left\{ 2;{{a}_{2}};{{a}_{3}};...;{{a}_{n-1}};42 \right\}\]

\[{{a}_{2}}+{{a}_{3}}+{{a}_{n-1}}=56\]

Заметим, однако, что числа ${{a}_{2}}$ и ${{a}_{n-1}}$ получаются из стоящих по краям чисел 2 и 42 путём одного шага навстречу друг другу, т.е. к центру последовательности. А это значит, что

\[{{a}_{2}}+{{a}_{n-1}}=2+42=44\]

Но тогда записанное выше выражение можно переписать так:

\[\begin{align} & {{a}_{2}}+{{a}_{3}}+{{a}_{n-1}}=56; \\ & \left({{a}_{2}}+{{a}_{n-1}} \right)+{{a}_{3}}=56; \\ & 44+{{a}_{3}}=56; \\ & {{a}_{3}}=56-44=12. \\ \end{align}\]

Зная ${{a}_{3}}$ и ${{a}_{1}}$, мы легко найдём разность прогрессии:

\[\begin{align} & {{a}_{3}}-{{a}_{1}}=12-2=10; \\ & {{a}_{3}}-{{a}_{1}}=\left(3-1 \right)\cdot d=2d; \\ & 2d=10\Rightarrow d=5. \\ \end{align}\]

Осталось лишь найти остальные члены:

\[\begin{align} & {{a}_{1}}=2; \\ & {{a}_{2}}=2+5=7; \\ & {{a}_{3}}=12; \\ & {{a}_{4}}=2+3\cdot 5=17; \\ & {{a}_{5}}=2+4\cdot 5=22; \\ & {{a}_{6}}=2+5\cdot 5=27; \\ & {{a}_{7}}=2+6\cdot 5=32; \\ & {{a}_{8}}=2+7\cdot 5=37; \\ & {{a}_{9}}=2+8\cdot 5=42; \\ \end{align}\]

Таким образом, уже на 9-м шаге мы придём в левый конец последовательности — число 42. Итого нужно было вставить лишь 7 чисел: 7; 12; 17; 22; 27; 32; 37.

Ответ: 7; 12; 17; 22; 27; 32; 37

Текстовые задачи с прогрессиями

В заключение хотелось бы рассмотреть парочку относительно простых задач. Ну, как простых: для большинства учеников, которые изучают математику в школе и не читали того, что написано выше, эти задачи могут показаться жестью. Тем не менее именно такие задачи попадаются в ОГЭ и ЕГЭ по математике, поэтому рекомендую ознакомиться с ними.

Задача №11. Бригада изготовила в январе 62 детали, а в каждый следующий месяц изготовляла на 14 деталей больше, чем в предыдущий. Сколько деталей изготовила бригада в ноябре?

Решение. Очевидно, количество деталей, расписанное по месяцам, будет представлять собой возрастающую арифметическую прогрессию. Причём:

\[\begin{align} & {{a}_{1}}=62;\quad d=14; \\ & {{a}_{n}}=62+\left(n-1 \right)\cdot 14. \\ \end{align}\]

Ноябрь — это 11-й месяц в году, поэтому нам нужно найти ${{a}_{11}}$:

\[{{a}_{11}}=62+10\cdot 14=202\]

Следовательно, в ноябре будет изготовлено 202 детали.

Задача №12. Переплётная мастерская переплела в январе 216 книг, а в каждый следующий месяц она переплетала на 4 книги больше, чем в предыдущий. Сколько книг переплела мастерская в декабре?

Решение. Всё то же самое:

$\begin{align} & {{a}_{1}}=216;\quad d=4; \\ & {{a}_{n}}=216+\left(n-1 \right)\cdot 4. \\ \end{align}$

Декабрь — это последний, 12-й месяц в году, поэтому ищем ${{a}_{12}}$:

\[{{a}_{12}}=216+11\cdot 4=260\]

Это и есть ответ — 260 книг будет переплетено в декабре.

Что ж, если вы дочитали до сюда, спешу вас поздравить: «курс молодого бойца» по арифметическим прогрессиям вы успешно прошли. Можно смело переходить к следующему уроку, где мы изучим формулу суммы прогрессии, а также важные и очень полезные следствия из неё.

Тема "прогрессия арифметическая" изучается в общем курсе алгебры в школах в 9 классе. Эта тема является важной для дальнейшего углубленного изучения математики числовых рядов. В данной статье познакомимся с прогрессией арифметической, ее разностью, а также с типичными задачами, с которыми могут столкнуться школьники.

Понятие о прогрессии алгебраической

Числовая прогрессия представляет собой последовательность чисел, в которой каждый последующий элемент можно получить из предыдущего, если применить некоторый математический закон. Известно два простых вида прогрессии: геометрическая и арифметическая, которую называют также алгебраической. Остановимся на ней подробнее.

Представим себе некоторое рациональное число, обозначим его символом a 1 , где индекс указывает его порядковый номер в рассматриваемом ряду. Добавим к a 1 некоторое другое число, обозначим его d. Тогда второй элемент ряда можно отразить следующим образом: a 2 = a 1 +d. Теперь добавим d еще раз, получим: a 3 = a 2 +d. Продолжая эту математическую операцию, можно получить целый ряд чисел, который будет называться прогрессией арифметической.

Как можно понять из изложенного выше, чтобы найти n-ый элемент этой последовательности, необходимо воспользоваться формулой: a n = a 1 + (n-1)*d. Действительно, подставляя n=1 в выражение, мы получим a 1 = a 1 , если n = 2, тогда из формулы следует: a 2 = a 1 + 1*d, и так далее.

Например, если разность прогрессии арифметической равна 5, а a 1 = 1, то это значит, что числовой ряд рассматриваемого типа имеет вид: 1, 6, 11, 16, 21, ... Как видно, каждый его член больше предыдущего на 5.

Формулы разности прогрессии арифметической

Из приведенного выше определения рассматриваемого ряда чисел следует, что для его определения необходимо знать два числа: a 1 и d. Последнее называется разностью этой прогрессии. Оно однозначно определяет поведение всего ряда. Действительно, если d будет положительным, то числовой ряд будет постоянно возрастать, наоборот, в случае d отрицательного, будет происходить возрастание чисел в ряду лишь по модулю, абсолютное же их значение будет уменьшаться с ростом номера n.

Чему равна разность прогрессии арифметической? Рассмотрим две основные формулы, которые используются для вычисления этой величины:

  1. d = a n+1 -a n , эта формула следует непосредственно из определения рассматриваемого ряда чисел.
  2. d = (-a 1 +a n)/(n-1), это выражение получается, если выразить d из формулы, приведенной в предыдущем пункте статьи. Заметим, что это выражение обращается в неопределенность (0/0), если n=1. Связано это с тем, что необходимо знание как минимум 2-х элементов ряда, чтобы определить его разность.

Эти две основные формулы используются для решения любых задач на нахождение разности прогрессии. Однако существует еще одна формула, о которой также необходимо знать.

Сумма первых элементов

Формула, с помощью которой можно определить сумму любого количества членов прогрессии алгебраической, согласно историческим свидетельствам, была впервые получена "принцем" математики XVIII века Карлом Гауссом. Немецкий ученый, еще будучи мальчиком в начальных классах деревенской школы, заметил, что для того, чтобы сложить натуральные числа в ряду от 1 до 100, необходимо сначала просуммировать первый элемент и последний (полученное значение будет равно сумме предпоследнего и второго, предпредпоследнего и третьего элементов, и так далее), а затем это число следует умножить на количество этих сумм, то есть на 50.

Формулу, которая отражает изложенный результат на частном примере, можно обобщить на произвольный случай. Она будет иметь вид: S n = n/2*(a n +a 1). Заметим, что для нахождения указанной величины, знание разности d не требуется, если известны два члена прогрессии (a n и a 1).

Пример №1. Определите разность, зная два члена ряда a1 и an

Покажем, как применять указанные выше в статье формулы. Приведем простой пример: разность прогрессии арифметической неизвестна, необходимо определить, чему она будет равна, если a 13 = -5,6 и a 1 = -12,1.

Поскольку нам известны значения двух элементов числовой последовательности, при этом один из них является первым числом, то можно воспользоваться формулой №2 для определения разности d. Имеем: d =(-1*(-12,1)+(-5,6))/12 = 0,54167. В выражении мы использовали значение n=13, поскольку известен член именно с этим порядковым номером.

Полученная разность свидетельствует о том, что прогрессия является возрастающей, несмотря на то, что данные в условии задачи элементы имеют отрицательное значение. Видно, что a 13 >a 1 , хотя |a 13 |<|a 1 |.

Пример №2. Положительные члены прогрессии в примере №1

Воспользуемся полученным в предыдущем примере результатом, чтобы решить новую задачу. Она формулируется следующим образом: с какого порядкового номера элементы прогрессии в примере №1 начнут принимать положительные значения?

Как было показано, прогрессия, в которой a 1 = -12,1 и d = 0,54167 является возрастающей, поэтому с некоторого номера числа начнут принимать только положительные значения. Чтобы определить этот номер n, необходимо решить простое неравенство, которое математически записывается так: a n >0 или, используя соответствующую формулу, перепишем неравенство: a 1 + (n-1)*d>0. Необходимо найти неизвестное n, выразим его: n>-1*a 1 /d + 1. Теперь осталось подставить известные значения разности и первого члена последовательности. Получаем: n>-1*(-12,1) /0,54167 + 1= 23,338 или n>23,338. Поскольку n может принимать только целочисленные значения, из полученного неравенства следует, что любые члены ряда, которые будут иметь номер больше чем 23, будут положительными.

Проверим полученный ответ, воспользовавшись приведенной выше формулой, чтобы рассчитать 23 и 24 элементы этой прогрессии арифметической. Имеем: a 23 =-12,1 + 22*0,54167 = -0,18326 (отрицательное число); a 24 =-12,1 + 23*0,54167 =0,3584 (положительное значение). Таким образом, полученный результат является верным: начиная с n=24 все члены числового ряда будут больше нуля.

Пример №3. Сколько бревен поместится?

Приведем одну любопытную задачу: во время заготовки леса было решено спиленные бревна укладывать друг на друга так, как это показано на рисунке ниже. Сколько бревен можно уложить таким образом, зная, что всего поместится 10 рядов?

В таком способе складывания бревен можно заметить одну интересную вещь: каждый последующий ряд будет содержать на одно бревно меньше, чем предыдущий, то есть имеет место прогрессия алгебраическая, разность которой d=1. Полагая, что число бревен каждого ряда - это член этой прогрессии, а также учитывая, что a 1 = 1 (на самом верху поместится только одно бревно), найдем число a 10 . Имеем: a 10 = 1 + 1*(10-1) = 10. То есть в 10-м ряду, который лежит на земле, будет находиться 10 бревен.

Общую сумму этой "пирамидальной" конструкции можно получить, если воспользоваться формулой Гаусса. Получаем: S 10 = 10/2*(10+1) = 55 бревен.


Самое обсуждаемое
Слои атмосферы по порядку от поверхности земли Слои атмосферы по порядку от поверхности земли
Экосистема: структура экосистемы, определение, понятие, виды и интересные факты Экосистема: структура экосистемы, определение, понятие, виды и интересные факты
Мавритания. Полезные ископаемые. Доклад: Мавритания Мавритания эгп Мавритания. Полезные ископаемые. Доклад: Мавритания Мавритания эгп


top